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SUNTO. — Nella sottospecie Mus musculus domesticus sono state descritte numerose
popolazioni in cui gli individui differiscono per il numero cromosomico. Tale varia-
bilita dipende dalla presenza di un diverso numero di cromosomi metacentrici che
derivano dalla fusione di cromosomi acro- o telocentrici nella regione del centro-
mero. Questo tipo di traslocazione cromosomica viene definita fusione Robertso-
niana. Dalla iniziale scoperta nel 1969 da parte di Alfred Gropp di individui con va-
rianti cromosomiche nella valle svizzera di Poschiavo, pitt di 100 razze cromosomi-
che, in cui i metacentrici Robertsoniani sono fissati nella popolazione in omozigosi,
sono state descritte in regioni geografiche estese in tutto ’ovest dell’ Europa ed in par-
ticolare in Italia.

L’amicizia ed i comuni interessi scientifici tra Alfred Gropp, Ernesto Capanna e
Maria Gabriella Manfredi Romanini hanno dato 'impulso a moltissimi studi proprio su
quello che recentemente & stato definito il “fenomeno Robertsoniano”. Questi studi
hanno contribuito a comprendere: i) le basi molecolari della formazione dei cromosomi
metacentrici, ii) la formazione delle diverse razze cromosomiche, iii) I'impatto esercita-
to dalla condizione di eterozigosi cromosomica sull’isolamento riproduttivo e sugli
eventi di speciazione.
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ABSTRACT. — The subspecies Mus musculus domesticus has a very high chromosome
number variability for the presence, in different populations, of different numbers of
metacentric chromosomes. These metacentrics are derived by Robertsonian fusion, Ze.
the joining of two acro/telocentrics at the centromeres. Since the discovery in 1969 by
Alfred Gropp of the first chromosomal variant in an isolated mouse population of the
Swiss Poschiavo Valley, more than 100 geographically distinct chromosomal races with
metacentrics fixed in homozygosity have been described. The friendship and the com-
mon scientific interests among Alfred Gropp, Ernesto Capanna and Maria Gabriella
Manfredi Romanini have primed a wealth of studies on the “Robertsonian phenome-
non” in this species. These studies have contributed to elucidate i) the molecular bases
of metacentric chromosomes formation, ii) the establishment of metacentric races and
iii) the impact that chromosome heterozygosities exert on reproductive isolation and
speciation.

THE DISCOVERY OF THE TOBACCO MOUSE

The house mouse, Mus musculus domesticus, has a very high chro-
mosome number variability for the presence, in different populations,
of different numbers of metacentric chromosomes. These metacentrics
are derived by Robertsonian (Rb) fusion, ze. the joining of two
acro/telocentrics at the centromeres. Moreover, whole-arm reciprocal
translocation (WART) has likely contributed to this extensive chromo-
somal diversification (Capanna and Redi, 1995; Pialek ez al., 2005;
Solano et al. (2007). Within West Europe and North Africa (z.e., the
distribution area of this subspecies) over 100 geographically distinct
chromosomal races with metacentrics fixed in homozygosity have been
described. Their diploid number is comprised between the standard
2n=40 (all telocentric) and 2n=22 (nine pairs of metacentrics) chromo-
somes (Capanna, 1982; Pialek ez al., 2005; Hauffe ez al., 2012) and dis-
play contact areas in several geographic regions, generating hybrid
zones where individuals may present high levels of structural chromo-
somal heterozygosity. The presence of Rb chromosomes in heterozygos-
ity affects both the spermatogenetic and the oogenetic process, leading
to reduced fertility or sterility. Chromosomal races may become repro-
ductively isolated and, with time, they may undergo speciation.

Since the discovery in 1969 by Alfred Gropp of the first chromo-
somal variant in an isolated mouse population of the Swiss Poschiavo
Valley (nicknamed Tobacco mouse, Fatio 1869) (Gropp et al., 1969) ,
the house mouse has become one of the best known models of ‘chro-
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mosomal speciation’ (White, 1978; Capanna, 1982; King, 1993; Pialek
et al., 2005; Capanna et al, 2009) for the role that chromosomal
changes may exert in determining reproductive barriers. The friendship
and the common scientific interests among Alfred Gropp, Ernesto
Capanna and Maria Gabriella Manfredi Romanini have primed a
wealth of studies on the “Robertsonian phenomenon” in the house
mouse (Garagna et al., 2014) and the establishment at the Universities
of Pavia and Rome of generations of pupils, including three of the
authors of this review.

These studies have contributed to elucidate i) the molecular bases
of metacentric chromosomes formation, ii) the establishment of meta-
centric races and iii) the impact that chromosome heterozygosities exert
on reproductive isolation and speciation.

This paper is dedicated to the memory of professor Maria
Gabriella Manfredi Romanini, and reviews the main scientific achieve-
ments that make the house mouse an impressive model species.

THE MOLECULAR COMPOSITION AND ORGANISATION OF THE
CENTROMERIC REGIONS MAKES THE MOUSE TELOCENTRIC
CHROMOSOMES PRONE TO RB FUSION

Rb translocation is the most diffused chromosome rearrangement
in Mammals (Nguyen ez al., 2008; Adega et al., 2009), and the house
mouse has become a model species for the study of the molecular
mechanisms of this mutation (Garagna et al., 1995; 2001; 2002; Nanda
et al., 1995; Kalitsis et al., 2006; Cazaux et al., 2013). A comparative
molecular analysis of the pericentromeric regions within eleven species
and subspecies of the genus Mus, all with 2n=40 chromosomes, has evi-
denced a more homogeneous molecular composition and organisation
of these regions of all the autosomes and the X chromosome in the Mus
musculus domesticus subspecies (Redi et al., 1990; Garagna et al., 1993).
It is this homogeneity that may determine the molecular background
for the proneness of the house mouse chromosomes to Rb fusion (Redi
et al., 1990; Garagna et al., 1993).

From the physical end towards the centromere of each telocentric
and of the X chromosome the following families of repetitive DNA
sequences are present: about 50-150 kb of telomeric sequences; a 1,780
bp truncated L1 (tL.1) element; 1.8 to 15 kb of the TeLoCentric satellite
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(this satellite family is not present on each chromosome; Kalitsis e a/.,
2006; Cazaux et al., 2013); about 300-600 kb of minor satellite DNA
(MinSat) (Kipling ez al., 1991) and, more distantly, about 6 Megabases
of major satellite DNA (MajSat) constitute the pericentromeric region
and are involved in heterochromatin formation (Guenatri ez al., 2004).
Frequent exchange between non-homologous chromosomes is the like-
ly mechanism of sequence conservation from the telomeric to the peri-
centromeric regions, and the head to tail orientation of the monomers
(Wong and Rattner, 1988) sustains a base-pairing dependent mecha-
nism of inter-chromosomal exchange between satellite sequences.

In the house mouse, translocation occurs in the centromeric
regions. Following Rb fusion, the telomeric sequences and a relevant
portion of the MinSat DNA are lost, and the newly formed centromeric
region of the metacentric chromosome is made of about 50-70 Kb of
MinSat, sandwiched between two blocks of MajSat DNA contributed
by the two telocentrics (Garagna et al., 1995; 2001; Nanda ez al., 1995).
Fibre-FISH analysis confirmed, by direct visualisation of a discrete
region of MinSat flanked by MajSat DNA on both sides, this organisa-
tion across the centromeric region of Rb metacentrics (Garagna et al.,
2002). Both telocentrics involved in Rb translocation contribute with
about 20-30 Kb each of MinSat sequences to the centromere, as shown
by the contra-lateral symmetry of the signals observed using the chro-
mosome oriented FISH (CO-FISH) procedure; also, the DNA polarity
is maintained through the fusion point from one to the other chromo-
some arm of the newly formed Rb metacentric (Garagna ez al., 2001).
The conservation of this molecular organisation might allow WART,
accelerating chromosomal evolution in the house mouse, as in the
Aeolian archipelago in Sicily (Solano ez al., 2009).

RECOMBINATION SUPPRESSION AND GAMETOGENESIS
IMPAIRMENT CONTRIBUTE TO POPULATION DIVERGENCE

Different chromosomal races may come into contact generating
“hybrid zones” where heterozygous mice are present. Heterozygotes
are defined as “simple” when, during meiotic pairing, homologous
chromosomes form trivalents, or “complex”, when alternate arm
homologies among different chromosomes leads to the formation of
chain or ring meiotic figures. The presence of complex chromosome
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configurations may result in defective chromosomal pairing (Castiglia
and Capanna, 2002; Wallace et al., 2002; Merico et al., 2003; 2013;
Manterola ez al., 2009) leading to non-disjunction (Searle, 1993; Everett
et al., 1996; Eaker et al., 2001), and thus to the formation of aneuploid
gametes (Gropp et al., 1982; Redi et al., 1984; 1985). Also, defective
chromosomal pairing may trigger the apoptotic process in germ cells
during both the male and female gametogenesis (Garagna et al., 1990;
2001; Merico et al., 2008; Manterola et al., 2009; Rodriguez et al.,
2010). Studies on heterozygous mice, carrying translocations leading to
the formation of a number of trivalents at meiosis I, have shown that
apoptosis mainly occurs at metaphase I or metaphase II through, at
least in part, a mitochondrial-dependent mechanism. (Merico et al.,
2003; 2008; Manterola ez al., 2009). The reduced or absent production
of gametes that can carry aneuploidies cause either decreased fertility or
complete sterility of heterozygous animals, thus reducing their repro-
ductive fitness (Redi and Capanna, 1988; Hauffe and Searle, 1998;
Castiglia and Capanna, 2000).

Chromosomal translocations may also exert effects on the frequen-
cy and distribution of chiasmata. In fact, lower number of recombination
foci have been detected in both homozygous and heterozygous Rb than
in all-telocentric mice (Bidau ez a/., 2001; Castiglia and Capanna, 2002;
Dumas and Britton-Davidian, 2002; Merico et al., 2003; 2013).

In addition, the chiasma pattern along the rearranged chromo-
somes may be affected. While the frequency of proximal chiasmata tends
to be lower in Rb than in telocentric bivalents, in trivalents the frequency
of proximal and interstitial chiasmata increases (Bidau et 4/, 2001;
Dumas and Britton-Davidian, 2002). On the contrary, when more com-
plex meiotic figures (e.g., chains) are present, recombination foci are
preferentially located in the terminal region of the chromosomes.
Incompleteness or abnormalities of the pairing process at the centromere
(likely due to pairing difficulties near the position of the chromosomal
breakpoint of the heterozygous chromosomes) perhaps influence the
reduction of the proximal recombination events, as shown by the shift
towards the distal chromosome region (Merico ez al., 2013). Thus, in the
rearranged chromosomes, there seems to exist a mechanism of recombi-
nation suppression that plays a role in reducing chromosomal exchange.
To this regard, the use of microsatellite for the assessment of the impact
of chromosomal rearrangements on gene flow in a chromosomal hybrid
zone between the Cittaducale chromosomal race (2n=22) and popula-
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tions with standard karyotype (2n=40) in central Italy has confirmed that
gene flow is lower at the centromere of all the tested Rb chromosomes
(Franchini ez al., 2010). If loci present in the centromeric regions are
linked to “isolation genes”, genetic diversification can be facilitated. The
decrease and the shift towards the distal chromosome region of the
recombination breakpoints ease the accumulation of genic differences
that may contribute to reproductive isolation.

In summary, if we look back, forty-five years have passed since the
description of the first Rb population; many important aspects have
been clarified and many scientific achievements reached, but the story
of the Tobacco mouse becomes everyday more and more intriguing and
fascinating. To be continued...
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