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SUNTO. – Si rassegna una linea di ricerca che, nell’arco di qualche anno, ha portato ad
un sostanziale cambio di prospettiva riguardo ai modelli semplificati che permettono la
descrizione delle correnti fluide quasi-unidimensionali, delle loro instabilità, e dei loro
effetti su letti sabbiosi. Anche quando il flusso è considerato laminare, l’equazione di
Saint-Venant del flusso quasi-unidimensionale può essere formulata in piú di un modo;
si mostrerà che solo una di queste scelte è consistente con le equazioni tridimensionali
complete di Navier-Stokes. Quando il flusso è turbolento la necessità di un modello di
turbolenza, di solito quasi sempre del tipo della eddy viscosity, costituisce una compli-
cazione addizionale; si mostrerà che un tale modello può cadere in forte contrasto con
una simulazione numerica diretta dello stesso fenomeno, fino al punto di produrre
risultati di segno opposto. Per di piú, la simulazione numerica completa del flusso su di
un fondale ondulato esibisce un approccio non-monotono al suo limite di onde lunghe
(quasi-unidimensionale), con la presenza di una sorprendente risonanza che non ha
alcun analogo nel caso laminare e che dovrà essere l’oggetto di future ricerche.

***
ABSTRACT. – A research line is reviewed which, over a few years, led to a substantial
change of perspective about the simplified models that underlie the description of
quasi-onedimensional streams, their instabilities, and their effects upon sandy beds.
Even when the flow is assumed to be laminar, the Saint-Venant equation of quasi-oned-
imensional fluid flow can be formulated in more than one manner; it will be shown that
only one of these choices is consistent with the complete three-dimensional Navier-
Stokes equations. When the flow is turbulent, an added complication is the presence of
a turbulence model, most often of the eddy-viscosity type; it will be shown that such a
model can be in strong contrast with a direct numerical simulation of the same phe-
nomenon, even to the point of producing results of opposite sign. In addition, the com-
plete numerical simulation of flow past an undulated bottom exhibits a non-monotonic
approach to its long-wave, quasi-onedimensional limit, with a surprising resonance that
has no laminar counterpart and must become the subject of future investigations.
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1.  INTRODUCTION

When the scale of length over which a fluid flow evolves is much
larger than the depth of the channel or duct that contains it, this scale
contrast suggests a family of approximations where the flow is treated
as a small perturbation away from the one that would occur in an infi-
nitely long straight channel. Such approximations are widespread and
commonly used for both environmental and industrial flow problems.
Nonetheless, over several years in a joint research effort with the
Institut de Mècanique des Fluides de Toulouse and other institutions,
we have become aware that the slowly-varying (long-wave) limit of a
channel flow is more complicated than one could a priori imagine, and
hides several surprises. Some of these surprises have been uncovered in
our published papers and will be reviewed in this presentation.

Whereas the largest difficulties arise in turbulent flow, even in
laminar flow the long-wave formulation lends itself to non-unique
interpretations, and needs a careful analysis in order to be formulated
properly. We shall therefore begin by disambiguating the Saint-
Venant formulation for laminar flow in a manner which was estab-
lished in 2010 [1].

2.  CONSISTENT SAINT-VENANT APPROXIMATION

The analysis of slowly-varying channel flow, from (laminar) films
to (turbulent) oceans, is often performed with depth-averaged equa-
tions of motion. In inviscid flow these are named the “shallow-water”
equations

ht + (Uh)x = 0                                                                                        (1a)
Ut + UUx + px/ρ = 0                                                                              (1b)

with h representing the water height in the channel, U its mean (depth-
averaged) velocity and p,ρ pressure and density. In viscous, laminar or
turbulent, flow a similar depth averaging produces the Saint-Venant
equations,

ht + (Uh)x = 0                                                                                        (2a)
Ut + UUx + px/ρ = g sin α − τw/ρh                                                        (2b)
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with g sin α being the longitudinal component of gravity along a possi-
bly inclined duct with slope angle α, and wall shear stress τw usually
accounted for through a friction coefficient.

These equations are widely used for environmental problems in
the atmosphere and the ocean, as well as in rivers [2, 3], and success-
fully describe the propagation of flood waves, Rossby or Kelvin waves.
They also describe gravity currents and snow avalanches [4], as well as
granular flow along slopes [5, 6]. They are also a useful model for engi-
neering calculations, e.g. the pressure drop and phase distribution of
twophase flow in ducts [7, 8]. Many examples arise in hydrodynamic
stability theory, such as the roll-wave instability [9, 10, 11, 12] or the
stability of an erodible bed [13, 14, 15, 16].

Nevertheless there is trouble around the corner. Whereas eqs.(1)
are consistent with a uniform velocity profile, the Saint-Venant equa-
tions (2) stem from averaging a velocity profile that becomes zero at the
wall, and to be consistent require a correction coefficient β accounting
for the integral of this non-uniform velocity profile. Equation (2b) thus
becomes

Ut + βUUx + px/ρ = g sin α − τw/ρh                                                        (3)

One difficulty with eq.(3) is that more than one choice is possible
for both the correction coefficient β and the expression of the shear
stress τw. In plane-channel flow, β can be chosen as

           6/5         from the integrated momentum equation
           54/35     from the integrated energy equationβ =

      1           when velocity corrections are considered
                         negligible in turbulent flow.

Another difficulty arises in connection with the wall shear stress
τw, most often expressed as

where, for laminar flow cf = 64/Re, and various expressions have been
proposed for turbulent flow. The problem here is that this assumed
local relationship between shear stress and velocity is instantaneous
(takes effect immediately, with no phase shift when a sinusoidal pertur-
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bation is applied), in contrast with the essential role that a phase lead
between stress and velocity plays in the short-wave instability theory of
Benjamin [17].

An answer to these indeterminacies was given for laminar flow in
[1] and for turbulent flow in [18]. Following [1], the asymptotic analy-
sis of a channel with slowly varying height h(x,t) involves a two-scale
expansion such that t = T/ε, x = X/ε, and T, X remain O(1) as ε → 0.
It follows that ht =O(ε), hx =O(ε), even though h(x,t) itself is not
required to be small. An expansion of the laminar Navier– Stokes equa-
tions in powers of ε then leads to the following hierarchy: Order 0

Order 1

with boundary conditions u(1)
y (0) = u(1)(h) = v(1)(0) = 0 and v(1)(h) = ht,

which also implicitly determine the pressure gradient Px
(0). The order-0

solution is the classical Poiseuille flow, but with centerline velocity uM

and pressure gradient Px
(0) which are yet unknown functions of the

“slow” coordinates T,X:

Integrals of the order-1 momentum and energy equations are:

             
(4a)

      
(4b)

with the quantities on the right-hand side representing
• τ(1): first-order correction to the wall shear stress.
• f(1): first-order correction to the energy dissipation (entropy production).

These first-order corrections are absent in the classical formula-
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tion of the (either momentum- or energy-based) Saint-Venant equation;
their absence explains why these two formulations are inconsistent and
in contrast with each other. On the other hand, if both τ(1) and f(1) are
included, then the problem contains more unknowns than equations
and its solution becomes undetermined.

A solution to this conundrum is provided by the, also classical, vari-
ational property of the entropy production (dissipation), which states that
the order-0 Stokes flow (not only in a 2D channel, but also in a 3D geom-
etry) minimizes such dissipation. At the minimum of a function its first-
order perturbations are zero, and in fact in the present problem it is not
hard to verify that, for an arbitrary velocity perturbation u(1),

  

(5)

Therefore in the second of eqs.(4) the right-hand side can safely
be replaced by zero. It follows that of the two classical formulations, the
momentum equation (4a) and the energy equation (4b), only the energy
form is consistent in the absence of a right-hand side. Luchini & Charru
[1] thus arrived at the following conclusions:

Fig. 1. A classical problem: the formation of ripples and dunes (from [21]).
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1.  The energy form of the laminar Saint-Venant equation is the one that
provides consistent correction coefficients:

    (6/5)(hU2/2)t + (54/35)(hU3/2)x + hUPx/ρ = −3νU2/h.                    (6)

2.  The Saint-Venant momentum equation needs to contain the wall-
shear stress as an unknown, and can actually be used to find out this
shear stress after applying the energy equation:

    −τw = ρ(hU)t + (6/5)ρ(hU2)x + hPx.                                                     (7)

3.  For steady plane-channel flow, the long-wave wall shear stress is
consequently given by

    τw = τw
(0)[1 − (4Re/35)hx],                                                                  (8)

and it exhibits the expected phase lead.

Equation (8) reproduces the much earlier result, derived by labo-
riously solving the first-order equations for the corresponding velocity
profile, of Benjamin [17] and Yih [19]. The just described energy
method of [1] skips the calculation of the velocity profile, and thus gen-
eralizes with hardly any difficulty to 3D geometries and, as will be seen
in §4, to turbulent flow. It also clarifies that the role of the wall shear
stress in the momentum Saint-Venant equation (2b) is not that of a
parameter to be determined from an external costitutive equation, but
quite on the contrary an unknown determined by eq.(2b) itself.

3.  EFFECTS OF THE PHASE LEAD UPON AN ERODIBLE BOTTOM

An accurate model of quasi-onedimensional flow is necessary,
among other purposes, in the context of an even longer-standing study
of the formation of ripples and dunes [20, 21] under a stream of either
water or air. Fig. 1 shows several examples. In the words of [21], the
steady or oscillatory motion of a liquid above a granular bed leads to
the formation of ripples. The sand ripples one observes on a beach at
low tide are an example: these ripples were formed by the oscillations
induced by the surface waves when the beach was covered with shallow
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water. The mechanism of their formation, related to fluid inertia, sits in
the phase of bottom shear stress oscillations relative to oscillations of
the bottom itself, with positive phase advance of the shear stress drag-
ging the particles toward crests and negative phase delay towards
troughs. The net particle flux toward crests can also be understood as
the result of the mean steady drift flow (steady streaming). Similar
structures are also observed on the continental shelf at water depths of
200–300 m, with a wavelength of the order of 1 m.

Fig. 2. Whether a mound of sand casually formed over an erodible bed becomes higher
(thus making the flat bottom unstable) or lower (thus tending to restore flatness)
depends upon the phase of the channel depth perturbation relative to the shear

perturbation it induces.

The classical explanation of the formation of ripples and dunes,
within a linear-perturbation assumption, is illustrated in Fig. 2. As can
be seen, a phase lag of the wall shear stress with respect to the deforma-
tion of the bottom (which translates into a modulated height of the
channel) produces a larger shear on the downwards than on the
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upwards slope, and thus tends to drag sand particles down and smooth
the shape. Under a phase lag the bottom tends to return flat and is sta-
ble. On the opposite, a phase lead implies that shear on the upwards
slope is higher than shear on the downwards slope, and sand builds up
on top of the pre-existing dune and makes it grow even more. In a lin-
earized, small-perturbation setting both the bottom and shear pertur-
bations appear as sinusoids. (This is actually a weakness of the theory,
because experimentally observed dunes are frequently sharp-pointed
and closer to a sawtooth then to a sinusoidal shape, but the necessary
refinements will be left for future work.)

What needs to be emphasized in order to be compared with what
follows is that the laminar theory of §2, just as well as the older theories
of [17, 19, 22], does produce a negative quadrature component of
stress (a phase lead), and therefore provides a justification for the unsta-
ble growth of dunes. The turbulent theories based on an eddy viscosity
turbulence model, e.g. [23, 24], mimic the behaviour of their laminar
counterparts and predict a qualitatively similar phase lead of the wall
shear stress.

4.  TURBULENT SAINT-VENANT EQUATIONS

The extension of the consistent Saint-Venant formulation of §2 to
an eddy-viscosity model of turbulent flow was studied in [18]. Under
turbulent-flow conditions, with a position-dependent eddy viscosity
νT(y), the unperturbed velocity profile in a plane channel obeys

[νT(y)uy
(0)]y = ρ−1Px

(0).

This equation can be inverted to derive the eddy viscosity that is
consistent with an arbitrary (modelled, measured or computed) velocity
profile, thus giving

The procedure to do so is well know, and was exploited in the
past to deduce a turbulent-viscosity diagram from analytical [25],
experimental [26] or numerical [27] mean-velocity data.

The simplest natural ansatz is to use the eddy viscosity derived
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from the mean flow to describe the first-order perturbation caused by
a slow undulation of the channel bottom. This aim can be achieved in
two ways:

• a perturbation expansion in the small undulation amplitude ε;
• our previously developed consistent form of the Saint-Venant equation.

The two yield coherent results. The order-1 velocity perturbation,
in analogy with laminar flow, is obtained from a long-wave multiple-
scale expansion as

                                       
(9)

A key property of eq.(9), consequent to its sharing one and the
same y-dependent eddy viscosity with the mean flow, is that the corre-
sponding energy equation is endowed with a minimum-dissipation
property just as when viscosity is constant:

It follows that also in this turbulent case the energy form of the
Saint-Venant equation is the consistent approach. As shown in [18], the
energy equation can be generally formulated as

                                                   
(10)

where

This also includes the laminar case (6), where the velocity profile
is parabolic and therefore the form factors and the dissipation function
respectively evaluate to α = 6/5, β = 54/35 and f (0) = 3νU2/h.

It also remains true that, after the pressure gradient Px has been
determined from the energy equation, the averaged momentum equa-
tion can be used to provide the correct wall-shear stress τw. The momen-
tum Saint-Venant equation can generally be written as

−ρ−1τw = (hU)t + (αhU2)x + hρ−1Px                                                                                                                     (11)
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where τw(x,t) is the fluid shear stress on the bottom surface and α the
same form factor as defined above. Once again, this formula includes
the laminar result (8) as a special case.

4.1  Approximate velocity profile of channel flow

A rough but very simple approximation of the turbulent velocity
profile of channel flow is a logarithmic function all the way from the
bottom at y = −h to the free surface at y = 0, namely

u(0) = uM + κ−1uτ log(1 + z)                                                     (with z = y/h).

where uM is, as before, the centreline velocity, , and κ is the
universal von Kármán’s constant with a value close to 0.4.

Within this simplifying assumption the mean velocity U is then
given by

and the form factors work out to be:

From combining the momentum and energy equations (10) and
(11), the total wall-shear stress ensues as

                                 
(12)

Particularly for steady flow (where hU =const.), eq.(12) reduces to

                                                                     
(13)

Equation (13) was the main result of Luchini & Charru [18].
Within an eddy-viscosity model, in turbulent just as in laminar flow, on
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an undulated surface the first-order correction to wall shear stress
undergoes a phase lead.

5.  QUESTIONING THE EDDY-VISCOSITY MODEL

Whereas the analysis of [18] qualitatively confirmed, and quanti-
tatively made more precise, the already mainstream theory that the
long-wave limit of channel flow over an erodible bottom induces a
phase lead, it also opened an opportunity for testing the eddy-viscosity
model upon which this deduction is based. Equation (9) can be read as
establishing an equivalence between the effect of a perturbation in the
order-0 velocity profile u(0) and a volume force:

                                      

(14)

The problem of flow in a straight channel with an added volume
force is computationally much easier than flow in an undulated chan-
nel, and enables a rare comparison between its solution by time-
resolved direct numerical simulation (DNS) and the prediction of an
eddy-viscosity model.

Russo & Luchini [28] applied DNS to the simplified problem
depicted in Fig. 3, using the equivalence between the effect of a slowly
varying depth and an effective volume force.

Fig. 3. The response of channel flow to a volume force was analysed through direct
numerical simulation. Besides being relevant to the formation of dunes, this is a simple
enough problem to afford a head-to-head comparison between eddy viscosity and DNS.
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Fig. 4. Equivalent force to an undulated channel and its ensuing velocity perturbation
for laminar flow.

5.1  The example of laminar flow

The volume force relevant to Luchini & Charru’s [1] laminar
problem is

                                                 
(15)

Solving νδuyy + F = 0 provides the velocity perturbation as

νδu = (24y2 
− 30y4 + 18y5 

− 3y6)/40                                                         (16)

Both δu and F are plotted in Fig. 4. The interesting observation
here is that the total force (the integral of F) is set to zero, using the
property that a constant can always be absorbed in −px; this is impor-
tant because conservation of momentum reads τw = –px + ε ∫1

0 Fdy, and
therefore τw is unchanged with this choice. Yet, as shown in Fig. 5, even
when the integral of force is zero the integral of the velocity perturba-
tion is not. In fact δu is everywhere positive, which implies that a net
flow rate is generated with no net reaction force. This is somewhat unin-
tuitive until one thinks carefully about it, but still it is generally true, and
actually is a consideration also relevant to steady streaming [29, 30].

5.2  Forced turbulent flow with an eddy-viscosity turbulence model

For small perturbations to a parallel flow, most existing turbu-
lence models reduce to a y-dependent eddy viscosity (convection of the
turbulent energy is irrelevant in parallel flow). Among these, the least
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biased choice seems to be the eddy viscosity that is consistent with the
unperturbed velocity profile, as described by [25, 26, 27, 18]. The only
difference is that in the present section the mean velocity profile will be
the discretized one obtained from DNS rather than its approximation
adopted in §4.

Fig. 5. Property of the laminar solution: a zero net force generates a non-zero flow rate.

Fig. 6. Mean velocity profile from DNS at Re = 1700 and eddy-viscosity profile deducted
from it according to eq.(17).

Thus

                                 
(17)

With u0 from DNS data at Re = 1700, the resulting νT is displayed in Fig. 6.
Solving (νTδuy)y + F = 0 gives
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With F(y) = u0
2(y) − 

—
u0

2, where u0 is the numerically obtained mean
velocity, the corresponding result at Re = 1700 is displayed in Fig. 7. We
remark that once again δu is everywhere positive: a zero net force gen-
erates a positive flow rate.

5.3  Computed mean linear response of a forced turbulent flow

Even though a turbulent flow is nonlinear, a mean linear response
can be defined for small perturbations to the mean flow. This fairly
intuitive concept is mathematically somewhat hard to frame precisely;
nevertheless the mean linear response can be “measured”, either in an
experiment [31] or in a DNS [32], by imposing a volume force weight-
ed by a small parameter ε, performing a finite difference over ε and
averaging over a long enough time. A balance has to be struck between
linearity (improving with small ε) and statistical error associated to a
finite averaging time (decreasing with large ε).

Fig. 7. Equivalent force and corresponding velocity perturbation as obtained
from eddy viscosity.

In [28] we used the channel DNS code already developed for pre-
vious purposes in our laboratory [33], with a Fourier–Fourier–compact-
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difference discretization over a 4π ×2π ×2 periodic box. The result was
very surprising: as shown in Fig. 8 the velocity perturbation is not at all
of one and the same sign, like the eddy-viscosity model had predicted,
and in fact its integral, the flow-rate perturbation, is negative. A compar-
ison between the numerical and eddy-viscosity velocity perturbations is
exhibited in Fig. 9.

5.4  Conclusions of Russo & Luchini [28]

1.  The linear response of a channel flow to a small volume force provides
a valuable test bed for the comparison of DNS and turbulence models.

2.  The DNS results are essentially different, and even of opposite sign,
than the predictions of a commonplace eddy-viscosity model.
Provably, no (positive) eddy viscosity can match the DNS.

3.  Turbulence-convection models are not going to change this conclu-
sion, since in a parallel flow convection has no consequence.

4.  For applications such as flow along a wavy bottom, the quadrature
component of wall shear stress turns out to be positive: in contrast
to previous results, the erodible bottom is now predicted to be sta-
ble against long waves.

Fig. 8. Velocity response to a volume force from DNS.

These conclusions highlight a contradiction. Whereas in laminar
flow the relative phase of shear stress with respect to the perturbation of
the bottom leads to the deduction that an erodible bed is unstable at long
wavelength, DNS of turbulent flow shows that deriving a similar conclu-
sion from an eddy viscosity model is false. There were two implications:
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on one side eddy viscosity models are proved unreliable way beyond
what might have been suspected; on the other hand a mystery remains
about erodible beds, which in practice are indeed unstable. Trying to
clarify this contradiction led to the development to be described next.

Fig. 9. Comparison between eddy viscosity and DNS. Until we know better, setting the
flow-rate perturbation to zero is a better model than eddy viscosity.

6. IMMERSED-BOUNDARY DIRECT NUMERICAL SIMULATION
    OF TURBULENT FLOW PAST A WAVY BOTTOM

Whereas the results of the previous section prove beyond doubt
that an eddy viscosity model cannot correctly predict the perturbation
produced by an external volume force, the connection between this
result and flow past a wavy bottom relies on the approximate equiva-
lence established in eq.(14). In a later development [34] we overcame
this double passage by developing a new computer code, based on the
immersed-boundary method, that can handle a wavy bottom directly
without any linearization. The new code uses second-order finite differ-
ences in all directions, with a stretched coordinate along the wall-nor-
mal, z direction only; it has built-in parallelization and uses an explicit
time advancement for all but the pressurecorrection equation. Our
immersed-boundary implementation uses internal (to the fluid) points
only; it is continuous with respect to boundary crossing and stable in
iteration at all distances from the boundary. The same discretization
was adopted and proved its worth in a previous Stokes-flow application
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[35]. The most delicate part of the procedure turned out to be evaluat-
ing the wall shear stress. A commonly adopted solution of summing vir-
tual forces is not sufficient: the contribution of pressure gradient over
fractional cell boundaries is of the same order as the effect under inves-
tigation and had to be explicitly included in the calculation. Just as in
the previous work of [28], the amplitude ε of the wall oscillation has to
strike a compromise between linearity and statistical fluctuation error
of time averaging, which had to be found by trial and error. For this
purpose a new algorithm was developed [36] in order to estimate the
expected error of the time average.

Fig. 10. Turbulent channel: in-phase shear stress (left) and quadrature shear stress (right). 
Re = 1450 (Re = 100); computational box up to 8π.

Our first results, shown in Fig. 10 were generally consistent with
the eddy-viscosity finding of a negative quadrature component and
seemed to disprove Russo & Luchini’s [28] findings. Nevertheless, at
closer inspection, one could notice that the curve of the in-phase com-
ponent was far from becoming flat at its lefthand side, as it should
have been were the wavenumber range wide enough to attain the
long-wavelength limit. It looked necessary to attain smaller wavenum-
ber k. The smallest achievable wavenumber in a periodic-box DNS is
determined by the length of the periodic box, therefore the only way
to attain smaller wavenumbers was to increase the computational box
and with it the number of discretization points (for a fixed discretiza-
tion stepsize). After doing so in incremental steps up to a computa-
tional box 256π long (which required a 12288 × 160 × 64 mesh), we
could draw the totally unexpected plot in Fig. 11 here. This was the
main result of [34].

As can be seen from Fig. 11, the in-phase component of shear
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stress non-monotonically attains its limiting zero-k value (which can be
calculated theoretically and equals the perturbation of the mean stress
displayed in green). It also exhibits what looks like a corner singularity,
where incidentally its value is nearly exactly zero, at an intermediate
wavenumber. This shape hints at the presence of a resonance, although
a resonance of this kind is theoretically unknown. At the same time the
quadrature components overshoots zero, and in approaching k = 0 (the
long-wave limit), it is indeed positive in accordance with the results of
Russo & Luchini [28].

Fig. 11. Turbulent channel: in-phase shear stress (left) and quadrature shear stress (right)
for small k. Re = 1450 (Re = 100); computational box up to 256π.

6.1  Effect of Reynolds number

The initial calculations displayed in Figs. 10-11 were performed
at the smallest Reynolds number where turbulence can be sustained
for obvious reasons of computational cost; a doubt thus remained
that the observed pecularities might be specific to this case.
Computer runs at larger Reynolds number, however, essentially con-
firmed the previous findings. Fig. 12 shows plots of the in-phase and
quadrature components of shear stress for three different Reynolds
numbers, and Fig. 13 the same data again, but with the horizontal axis
normalized in wall units. Although the corner singularity only appears
to be present at the smallest Reynolds number (with the fascinating
suggestion that a mathematical singularity may actually be present
right at transition, and then become smoothed with increasing
Reynolds number), the general behaviour of these curves and in par-
ticular the overshoot of the quadrature component are confirmed to
be generic features.
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Fig. 12. In-phase (left) and quadrature (right) shear stress perturbations at higher
Reynolds numbers.

Fig. 13. In-phase (left) and quadrature (right) shear stress perturbations at higher
Reynolds numbers versus wavenumber in wall units.

7.  CONCLUSIONS

In this overview of results obtained through several years, and pub-
lished in several papers, we have shown that the linear response of turbu-
lent flow to a wavy bottom exhibits a (possibly singular) change of behav-
iour, and sign, at very large wavelength (λ ≈ 32π when Reτ = 100, or λ+ ≈
5000 at higher Reynolds numbers). This could only be seen through DNS
by adopting a much longer computational box than the usual size of 4π
generally deemed sufficient for most purposes. No experiment, to our
knowledge, has been conducted at such large wavelength, although with
hindsight some confirmation can be found [37] in the old experiments of
Abrams and Hanratty [38]. In striking contrast to laminar flow (and to all
turbulence models), the long-wave quadrature shear stress is positive, just
as predicted by the equivalent-force simulations of Russo & Luchini [28].
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As far as the implications for shear stress over a dune are con-
cerned, we see that there always is a range of wavenumbers where the
quadrature component of shear stress is negative, in agreement with the
observation that dunes do unstably grow in practice, but this is not the
long-wave limit. Contrary to what happens in laminar flow, in turbulent
flow the long-wave limit of quadrature shear stress is positive, just as
predicted by the volume-force analogy of [28], but this limit is only
achieved at really long wavenumbers. It follows that the long-wave
Saint-Venant equations should be applied with great caution to turbu-
lent flow, and in particular not using eddy-viscosity models which fail
to predict the correct behaviour. For laminar flow, on the other hand,
and for stability calculations of the same, the consistent Saint-Venant
equations derived in [1] provide an appropriate tool.
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