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SUNTO. – Il lavoro si pone l’obiettivo di raccontare una personale, e pertanto parziale, sto-
ria della dinamica e della stabilità nell’ambito della meccanica classica. L’idea è quella di
introdurre i concetti attraverso degli esempi chiari e comprensibili, senza utilizzare for-
mule matematiche. A tal fine si è scelto di prendere in considerazione alcuni fenomeni
dinamici con cui siamo abituati a convivere e che potrebbero sembrare banali ma che,
invece, sono in grado di spiegare concetti molto più complessi. Si parte da un breve rias-
sunto dell’evoluzione del concetto di equilibrio, per poi passare alla discussione sulla sta-
bilità e arrivare ai concetti più avanzati di stabilità strutturale e integrità dinamica.

***
ABSTRACT. – This work is aimed at reporting a personal, and thus partial, history of the
dynamics and stability concepts within the framework of classical mechanics. The idea
is to introduce these concepts without using mathematics and formula, but rather
through practical and clear examples. For this purpose, it has been chosen to take in
consideration some simple dynamic phenomena that we are used to live with, but that
are able to explain more complex concepts. The paper starts with a brief summary on
equilibrium concept evolution, passes through stability problems and arrives to more
advanced concepts, such as structural stability and dynamical integrity.

1.   INTRODUCTION AND FRAMEWORK

Dynamics is everywhere in our day life, which is plenty of move-
ments and actions. Dynamics is life: we can imagine motion without
life, but it is extremely difficult to figure out life without mobility. It is
perhaps because of these reasons, or others, that incontrovertibly
dynamics attracted the curiosity of human beings since long time ago,
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well before the scientific era, when it became one of the most important
sciences. While losing its aura of “main science” it had in the past, in
favor of new disciplines from which the humanity has many expecta-
tions (biology, information technology, economics, etc.), dynamics is
still alive, still permeates our life, and it is still able to contribute to
improve the quality of our lives. And it is not yet fully understood, nor
fully exploited, although a lot of progresses have been done.

Dynamics has a long history of discoveries, successes and fails,
attempts and chances, theory and experiments. It is not possible to
quote all of them, but it is possible to select some and try to narrate a
logical evolution of ideas and tools. This requires a choice, which is cer-
tainly personal, subjective and, thus, partial and incomplete. But it can
help in delineating the main steps from the basic (and pioneering,
according to the age in which they have been discovered) concepts to
the modern developments up to the challenges for the future.

This is the goal of this work, which is based on Newtonian (or
classical) mechanics (Isaac Newton, 1642-1727), which roughly
descends from the well-known equation force = mass · acceleration
obtained from the second law of motion [1], although much more has
been discovered and added to this basic formula. It is worth noting that
in the 18th and 19th centuries, more abstract and general methods were
developed, extending Newton’s work and leading to two important
reformulations known as Lagrangian and Hamiltonian mechanics [2,
3]. However, while being fundamental from many points of view, they
do not add novelties to the basic assumptions of Newtonian mechanics,
and provide “only” a different, rigorous and useful formalism.

Focusing on classical mechanics does not mean that the Relativity
Theory and Quantum Mechanics are less important, nor that they do
not have the phenomena we are going to discuss: simply, classical
mechanics is sufficient for our illustrative purposes, especially because
it is the one we experience in our everyday life.

Moreover, the dynamic phenomena discussed in this paper are
not peculiar of mechanics, and are indeed important in many fields of
engineering, science, economics, medicine, etc.

The work starts with an overview of the equilibrium concept evo-
lution, and then deals with stability problems, giving a brief explana-
tion of the bifurcation theory by means of some examples. Finally, the
problems of structural stability and dynamical integrity are introduced
and discussed.
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2.   EQUILIBRIUM

The first dynamical issue that has been investigated in the past
was equilibrium, i.e. lack of motion. The concept of equilibrium has its
roots in the Greek scientific-philosophical thought. Science and phi-
losophy, in fact, have been always strictly connected until the modern
and sectorial division of disciplines. Particularly, Mechanics became a
formal and axiomatic science only in the XVII century, and until then
it corresponded essentially to Statics. The latter is one of the most
ancient sciences, taking its origin from Greeks, who anticipated the
concepts of gravity, force, equilibrium, motion, etc. [4, 5]. In this con-
text, the first evidence we have about a scientific formulation of the
equilibrium concept comes from the work of Archimedes (around
287-212 BC) [6]. In fact, he gave a rigorous explanation to the princi-
ple involved into the levers functioning, previously introduced by the
Peripatetic School of Aristoteles’ followers. In this context,
Archimedes remarked, according to Pappus of Alexandria,1 “Give me
a place to stand, and I will move the Earth” (Greek: δός μοι (φησι) ποῦ
στῶ καὶ κινῶ τὴν γῆν) (Fig. 1).

Fig. 1. The famous remark of Archimedes, quoted by Pappus of Alexandria:
“Give me where to stand, and I will move the Earth”.
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Archimedes’ work provided the basis of the equilibrium concept
that, accordingly to subsequent mechanical theories, will be formulated
as: ‘a body is said to be in equilibrium when the sum of all forces (and
angular momentum) acting on it is equal to zero’.

Other evidences that the equilibrium concept had already been
well understood by Greeks derive from observing classical art and
architecture. For instance, the low relief of the Parthenon (Fig. 2), con-
ceived and drawn by Fidia, can be examined with graphical statics,
building the funicular polygon of gravity forces and observing that the
resultant falls into the base support [7].

Fig. 2. The static conception of the Parthenon low relief conceived by Fidia [7].

The cultural heritage of theoretical mechanics received from the
antiquity, as mentioned above, is focused on two big themes. The first
one is related to the Aristotelian dynamics and, in particular, to its
main axiom that establishes the proportionality between the “power”
of a motion and its acquired velocity [8]. The second theme, instead,
is the one that began with Archimedes’ work on the gravity concept
and lever functioning [9]. Later, in the Middle Ages and in the
Renaissance many others (e.g. Giordano Nemorario (sec. XIII),
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Leonardo da Vinci (1452-1519)) contributed significantly to the devel-
opment of the concepts of gravity, equilibrium, kinematics and dynam-
ics. Obviously, one of the most important scientist working also on
these arguments was Galileo (1564-1642), which can be considered the
precursor of the Newtonian mechanics. In his essay De Motu, Galileo
introduced his first ideas in the field of hydrostatics, statics and
dynamics, through the study of solid bodies immersed in a fluid. All
these ideas were then developed in the essay Discorso al Serenissimo
Don Cosimo II, Gran Duca di Toscana, intorno alle cose che stanno in
su l’acqua, o che in quella si muovono, published in Florence in 1612,
which contains likely for the first time the definition of ‘angular
momentum’ (Fig. 3), one of the most relevant concepts in Statics [10,
11]. Other important contributions of Galileo to Mechanics are
focused on the inclined plane, on gravity and on pendulum. In partic-
ular, he claimed that a simple pendulum is isochronous, i.e. that its
swings always take the same amount of time, independently of the
amplitude [12], which is true if we are dealing with sufficiently small
oscillations.

Fig. 3. Galileo’s problem of cantilever beam [11].

A significant step forward in the ‘problem of equilibrium’ was
made by Pierre Varignon (1654-1722) with the definition of the forces
resultant (Fig. 4). He introduced also the ‘parallelogram rule’ and the
‘Varignon’s theorem’, which permits to analytically calculate the center
of mass position [13].
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Fig. 4. Varignon’s funicular polygon table [13].

Varignon’s work contributed to lay the basis for what would be
then called graphic (or graphical) statics. In graphical statics, the forces
acting on a system are drawn into a force diagram, which is directly
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linked to their corresponding force polygons through geometrical con-
straints.

The use of these graphical methods to solve engineering prob-
lems is generally attributed to the German engineer Karl Culmann
(1821-1881), who is considered the father of graphical statics (Fig. 5)
[14, 15].

Fig. 5. Karl Culmann: Static graphics applied to engineering equilibrium problems:
a crane, a railway bridge with a moving concentrated load [14].

The mathematician and politician Luigi Cremona (1830-1903)
gave a significant contribution to graphical statics with Cremona’s dia-
gram, especially studying trusses (Fig. 6) [16].

Fig. 6. Examples of Cremona’s diagram [16].

3.   STABILITY

So far we have seen a brief summary of the static equilibrium con-
cept, defined as sum of forces (and angular momentum) equal to zero.
However, sometimes equilibrium is precarious (Fig. 7) and at a certain
point it seems to disappear.
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Fig. 7. Examples of precarious balance.

This happens, for instance, when a compressive load is applied to
a sufficiently slender body, e.g. a ruler (Fig. 8). This is the famous Euler
buckling problem (Fig. 9), first investigated and solved by Leonhard
Euler (1707-1783), who was able to compute the force threshold,
known as 'critical load', for the activation of this phenomenon. [17, 18].

Fig. 8. Ruler subjected to compressive load.

A careful check shows that the straight equilibrium configuration
always exists, for whatever value of the axial load (remaining in the elas-
tic range). This can be easily understood by noting that in this configu-
ration the sum of forces and angular momentum is trivially equal to
zero, since they are always two identical and opposite forces acting on
the same line. This is also confirmed mathematically by the picture of
Fig. 10, known as bifurcation diagram, revealing that the rest configu-
ration always exists. What happens at the critical threshold is (i) that
two buckled configurations appear, one on the left and one on the right,
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and (ii) that the rest configuration is no longer visible in practice (while
existing theoretically).

Fig. 9. Euler’s critical load configurations:
Initial Load (Pi<Pcr), Critical Load (Pi=Pcr), Final Load (Pf>Pcr).

Fig. 10. Bifurcation point in the loading path.

The conclusion is that at the critical load we are not losing equi-
librium, and something different happens.

It is the ‘quality’ of equilibrium that is lost; understanding this
point was another major improvement in the knowledge of basic fea-
tures of dynamics.
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A new concept was needed, that was named ‘stability’. The intu-
itive idea of stability in the Lyapunov sense [19] (Aleksandr Michajlovi
Lyapunov, 1857-1918) is that for ‘small’ perturbations from the equilib-
rium state at a certain initial time, subsequent motions should not be
too ‘large’. In other words, initial conditions close to an equilibrium
solution tend to remain close along the time. Like the popular example
of a ball at the bottom of the well. On the contrary, an equilibrium is
unstable if small perturbations lead to motion that diverges from the
equilibrium, as it happens to a ball on the top of a hill.

Stability is an inherently dynamic concept, but sometimes it can
be treated as a static phenomenon for the solution of some important
engineering problems. One of these is the aforementioned Euler’s
problem [17]: what characterizes the problem is a loss of stability (at
the critical load), not equilibrium, without dynamic effects. Actually, it
can be affirmed that Euler had already understood the concept of sta-
bility, although Lyapunov gave its exact definition long afterward.

Later on, mathematicians framed the Euler’s problem and other
similar problems that have been observed in the meantime by scientists
and engineers in a unified viewpoint, and developed the ‘theory of
bifurcations’ [20], in which the loss of stability was investigated system-
atically, and can be seen as a bifurcation point in a loading path. For
smooth systems the obtained results look exhaustive, and only extreme-
ly pathological cases still need to be investigated [21], while for non-
smooth systems there is not yet a comprehensive classification [22, 23].

It is worth to remark that the theory of bifurcations is an inherently
nonlinear topic.

One of the major results of the theory of bifurcations is that there
are only few types of simple bifurcations of equilibrium points. In addi-
tion to the saddle-node, that will be discussed in the next section and
that has different features, they are the supercritical pitchfork bifurca-
tion (Fig. 11), where two buckled stable solutions exist above the bifur-
cation point (critical load); the subcritical pitchfork bifurcation
(Fig. 12), where the buckled solutions are both unstable and exist
below the bifurcation value; and the transcritical bifurcation (Fig. 13),
where two equilibrium paths cross and exchange their stability.

All these cases have the common feature of having a stable equi-
librium solution existing below the bifurcation point, where it contin-
ues to exist although losing stability. This is why they were often indis-
tinct by engineers in the past, although the post-critical behavior is
strongly different, both theoretically and practically.
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Fig. 11. Supercritical Bifurcation.

Fig. 12. Subcritical Bifurcation.

Fig. 13. Transcritical Bifurcation.

DYNAMICS AND STABILITY: A LONG HISTORY FROM EQUILIBRIUM... 123



4.   FROM LOSS OF STABILITY TO LOSS OF EQUILIBRIUM

The above examples were engineering problems where the loss of
stability does not cause a loss of equilibrium. However, a dynamical sys-
tem can lose not only stability but also equilibrium for a varying config-
uration, or simply for a varying parameter. In the simplest way this hap-
pens when two equilibrium paths, one stable and one unstable, meet
and coalesce for a varying parameter. This phenomenon, known as
‘snap-through buckling’ [24, 25, 26, 27] in engineering language, and
saddle-node bifurcation [28] in mathematical language, implies that at
the bifurcation point the system jumps instantaneously to another equi-
librium configuration (or to another type of motion, indeed), existing
elsewhere in the configuration space [29] (Fig. 14).

Fig. 14. Snap-through buckling: (a) initial and post-snap configurations of a SDOF arch
(discrete system), (b) initial and post-snap configurations of a shallow arch (continuous

system), (c) force-displacement curve.

To better understand this phenomenon, let us consider a tennis
ball cut in two parts and suppose to take one of these. If we apply a
compression load on the convex part of the ball, we can observe the
destabilization process until the achievement of another stable equilib-
rium configuration (inverted configuration) (Fig. 15).

Snap-through buckling phenomena pose some of the most diffi-
cult problems in nonlinear structural analysis [24].

It is worth noting that the saddle-node bifurcation is the most fre-
quent and probable in applications, while the other cases (pitchfork
and transcritical) usually happen under particular conditions, such as
the absence of imperfections or the presence of symmetries (see Sect. 8
for more details). In fact, it is possible to show that generic perturba-
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tions of the system transform a pitchfork or a transcritical bifurcation
into a saddle-node bifurcation.

Fig. 15. Example of snap-through buckling: the tennis ball.

Although the saddle-node bifurcation represents the generic case
from the dynamical point of view, it is not the best bifurcation for illus-
trative purposes. This because equilibrium and stability, which are differ-
ent concepts, disappear simultaneosly, whereas in the other cases of bifur-
cation they are disjointed. This is likely the reason why the latter have
been investigated first in the history (e.g. the Euler's problem), probably
leading to the discovery of the stability concept.

What we have seen so far are local bifurcations, which deal with
phenomena happening near an equilibrium point. It is possible to intro-
duce a mathematical comprehensive bifurcations classification based on
how the stability of an equilibrium solution is lost. To get this goal, let us
consider the eigenvalues of the linearized system around the equilibrium
position. If all the eigenvalues have a negative real part, the equilibrium is
stable; if at least one eigenvalue has a positive real part, then it is unstable.

In this respect, the loss of stability can easily be seen as the cross-
ing of the imaginary axes (the real part passes from negative to positive)
by varying a governing parameter.
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The local bifurcations illustrated above correspond to a real
eigenvalue becoming zero, plus some additional conditions for the tran-
scritical and pitchfork bifurcations (and are just these extra conditions
that make them uncommon). This provides a mathematical method to
detect the bifurcation point.

The local stability, however, can also be lost when a couple of
complex conjugate eigenvalues crosses the imaginary axis. This is an
intrinsically dynamical phenomenon, known as Hopf bifurcation [30],
that will be discussed in the following section.

5.   DYNAMICS

The Hopf bifurcation corresponds to the local birth (or death) of
a periodic solution from an equilibrium one as a certain parameter
crosses a critical value. It is the simplest bifurcation not just involving
equilibrium and, therefore, it belongs to what is sometimes called
dynamic bifurcation theory [31]. In fact, the ‘static approximation’
which is valid for the previous bifurcations is no longer valid here.
Dynamics eventually becomes the central topic.

As pitchfork, also Hopf bifurcation can be supercritical or sub-
critical, resulting in stable or unstable limit cycles ensuing from the
equilibrium point, respectively. In particular, when a stable limit cycle
surrounds an unstable equilibrium point, the bifurcation is supercriti-
cal. If the limit cycle is unstable and surrounds a stable equilibrium
point, then the bifurcation is subcritical (Fig. 16).

Fig. 16. The Hopf Bifurcations: (a) supercritical, (b) subcritical.
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Likely, the most famous realization of the Hopf bifurcation in the
real world is the phenomenon known as flutter. It can be encountered
in flexible structures subjected to aerodynamic forces, such as aircrafts,
buildings and bridges. Flutter occurs as a result of interactions between
aerodynamics, stiffness, and inertial forces on a structure. When the
speed of an aircraft increases, there may be a point at which the struc-
tural damping is insufficient to damp out the growing motions due to
aerodynamic energy. In the worst case this vibration can lead to struc-
tural failure [32, 33]. Other meaningful examples concern bridges. In
particular, from the famous case of the Tacoma Narrows Bridge
(Fig. 17), it can be observed that due to the aeroelastic fluttering the
structure started to oscillate with an extremely large amplitude, that
eventually leads to the collapse.

Fig. 17. Fluttering phenomenon: the case of the Tacoma Bridge.

Another practical realization of Hopf bifurcation is known as gal-
loping, and happens in frozen telecommunication wires. The ice
around the wire changes the geometrical cross-section and its aerody-
namic properties, so that the wind can active oscillations even for small
values of its velocity. The mechanism is very similar to flutter, although
they have been named differently, likely as a consequence of the fact
that in flutter the aerodynamic coupling occurs with the ‘original’,
while in galloping it occurs with a ‘modified’ (by the surrounding ice)
structure.

Finally, a further common life example of Hopf bifurcation
occurs in garden hoses: when the velocity of the water overcomes a cer-
tain threshold, the hose starts to oscillate.

Note that in all the previous examples the governing parameter
leading to the Hopf bifurcation is the velocity of the gas/air/water.

The Hopf bifurcation is not the only dynamical phenomenon that
attracted the attention of researchers in the past. Another one is ‘reso-
nance’, that entails large oscillations of the system as a consequence of
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small excitations (Fig. 18) [34]. This amplification is obtained when the
period of the excitation is close to a natural period of the structure,
which is an intrinsic property of dynamical systems, just like the tone of
the voice is a characteristic of each person. The frequency at which the
amplitude of oscillation becomes maximum is called resonant frequen-
cy.

Fig. 18. The amplification of the system response due to resonance.

A practical realization of this phenomenon occurs in common
swings. In this case, children deliberately look for amplification of the
oscillations, and exploit this phenomenon by properly tuning the external
(provided by the parent that pushes, Fig. 19a) or the parametric (provided
by themselves, Fig. 19b) excitation. In fact, with relative small pushes, but
at the right time interval, it is possible to obtain large displacements.

Fig. 19. Resonance in the case of playground swings:
a) externally excited, b) parametrically excited.
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On a more serious side, resonance can be observed also on struc-
tures subjected to an earthquake, in many mechanical engineering
applications, and it is responsible for other curious phenomena, such as
the breaking of a glass when someone screams at the ‘right’ frequency
(resonance frequency).

When resonance occurs in nonlinear systems, it is called nonlinear
resonance and it has some specific characteristics. For example, the res-
onant frequency is no longer an intrinsic characteristic of the system (as
occurs for liner systems), but it depends on the amplitude of the exci-
tation. In this respect, it can be affirmed that Galileo was wrong on
pendulum isochronism for high amplitudes, while being right for small
ones. Nonlinear effects may significantly modify the shape of the reso-
nance curves, bending them toward low frequencies (softening behav-
ior, Fig. 20a) when the nonlinear term decreases the linear stiffness, or
toward high frequencies (hardening behavior, Fig. 20b) in the opposite
case [35].

Fig. 20. Nonlinear resonance curve response: (a) softening behavior, (b) hardening behavior.

The nonlinear behavior produces also other interesting phenom-
ena, known as sub- and super-harmonic resonances, where the amplifi-
cation occurs if the external excitation is an integer multiple (or sub-
multiple) of the natural frequency.

Furthermore, in the nonlinear resonance curves some local bifur-
cations can appear for large excitation amplitudes, leading to the jump
phenomenon and to the nonlinear hysteresis that is obtained increasing
and then decreasing the excitation frequency. This eventually links
bifurcation and resonance.
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Finally, also internal resonance may occur. It happens when the
dynamical system has two different natural frequencies that are one an
integer multiple of the other. It entails the exchange of energy between
different vibrations modes of the structure, which can be dangerous if
not properly taken into account.

6.   BIFURCATIONS OF PERIODIC ORBITS

As explained above, through the Hopf bifurcation it is possible to
have periodic motions from equilibrium solutions. But periodic orbits
can exist independently of being born from an Hopf bifurcation, and are
instead the common response as a consequence of periodic excitations.

Thus, the stability problem concerns also periodic solutions, and
the Lyapunov definition of stability, properly reformulated, applies.

The bifurcation theory has been developed for this kind of
motion [36, 37], too, and it was found that also in this case the local sta-
bility is governed by the eigenvalues of an appropriate matrix describ-
ing the local behavior around the periodic solution after one period.
According to the Floquet theory [38], the periodic solution is stable if
all the eigenvalues have a modulus smaller than 1, unstable if at least
one eigenvalue has a modulus larger than 1. It is then clear that the loss
of stability (bifurcation) occurs when, varying the governing parameter,
one eigenvalue gets modulus equal to 1.

In non-pathological cases, this can happen in three different way.
The first is when a real eigenvalue becomes equal to 1. The associate
bifurcation is called saddle-node (for periodic orbit), and it is very sim-
ilar to the corresponding one for equilibrium points: one stable period-
ic orbit and one unstable periodic orbit coalesce and jointly disappear.

The second case is when a real eigenvalue becomes equal to –1. It
has no counterpart for equilibrium points and it is named period-dou-
bling bifurcation because after the bifurcation the periodic orbit sur-
vives but becomes unstable, and another stable periodic orbit appears
with a period twice that of the original orbit.

Finally, the last case corresponds to a couple of complex conju-
gate eigenvalues having modulus exactly equal to 1. This somehow cor-
responds to the Hopf bifurcation for equilibrium points, and is named
secondary Hopf or, better, Neimark-Sacker bifurcation. Here the peri-
odic orbit survives but loses stability, and a stable quasi-periodic solu-
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tion appears. A quasi-periodic solution is an oscillation which has
two periods, incommensurable between each other, like for example
c1 sin(ω1 t)+c2 sin(ω2 t), ω1/ω1 ∈ ℝ\ℚ.

As for equilibrium solutions, there are also uncommon bifurca-
tions, similar to the transcritical and pitchfork ones, that require some
extra conditions. They will not be discussed here.

Practical examples of Neimark-Sacker bifurcations are the
shimmy and wobbling phenomena, although of course many other
real world examples exist. In aircrafts, shimmy is an oscillatory, com-
bined lateral-yaw motion of the landing gear caused by the interaction
between dynamic tire behavior and landing gear structural dynamics
(Fig. 21).

Fig. 21. (a) Shimmy of the main landing gear, (b) Examples of aircraft dual-wheel main
landing gear, (c) dynamic behaviors of the tires and the dual-wheel gear structure.

The amplitude of the motion caused by shimmy may grow up to
a level of annoying vibrations affecting the comfort and visibility of the
pilot, or can even result in severe structural damage and landing gear
collapse [39].

Shimmy not only occurs on aircrafts but has also been encoun-
tered on the steerable wheels of cars and motorcycles. In the latter case
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this phenomenon is called wobbling and can be defined as an unstable,
dangerous, oscillation of the front tire around steering axis (Fig. 22).

Fig. 22. The Wobbling phenomenon: (a) example of wobble, (b) dynamic of the front tire.

7.   OTHER KIND OF MOTIONS AND OTHER KIND OF BIFURCATIONS

In the previous sections it has been shown that three types of
motion may exist: equilibrium, periodic and quasi-periodic solutions.
One would wonder if this list is exhaustive, or whether there are other
types of motion. Certainly it is not difficult to imagine quasi-periodic
solutions having a large number of incommensurable frequencies. But
this is not enough, since other kind of motion exist, named homoclinic
and heteroclinic solutions. A homoclinic orbit is a trajectory of the
dynamical system that connects an equilibrium point (a saddle, to be
precise) to itself (Fig. 23a). A heteroclinic orbit, instead, is a trajectory
that connects two different equilibrium points [28] (Fig. 23b).

Both are generally unstable, although they play a major role, in
the background, in the organization of the dynamics of the system.

Finally, there is another kind of solution, lastly discovered, that it is
necessary to mention: chaos. Chaotic motions are characterized by not
having any period, never repeating forward in time although coming
back close enough to any previous point, possibly by waiting for a long
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time interval. When chaotic motion is stable it is named chaotic attractor.
An important property of chaos, related to its fractal nature, is its strong
dependence on initial conditions: two extremely close starting points
exponentially diverge forward in time along the attractor (Fig. 24). This
means that, in chaotic regime, it is impossible to predict systems dynamic
behavior long after the starting point (Butterfly effect) [40, 41], since in
real world it is not possible to know exactly the initial conditions.

Fig. 23. (a) Homoclinic and (b) heteroclinic orbits on the plane.

Fig. 24. Lorenz’s strange chaotic attractor.

As far as bifurcations are concerned, we have seen so far: saddle-
node, pitchfork (supercritical or subcritical), transcritical, and Hopf
bifurcations when equilibrium solutions are taken into account; whereas
saddle-node, periodic-doubling, and Neimark-Sacker bifurcations are
those related to periodic solutions. Again, this list is not exhaustive, since
other kind of bifurcations have been discovered theoretically, and some-
times observed (directly or indirectly) in practice. They are the degener-
ate local bifurcations (in addition to transcritical and pitchfork), bifurca-
tions of non-smooth systems (which are plenty of new and unexpected
behaviors), and global bifurcations, such as homoclinic and heteroclinic
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bifurcations, that have the characteristic of involving the ‘whole’ dynam-
ics of the system and not a specific orbit. Global bifurcations often occur
when some invariant sets, commonly stable or unstable manifolds, collide
between each other, causing changes in the topology of the trajectories in
the ‘whole’ phase space. They can also involve chaotic attractors [41],
and in this case sometimes they have been called crisis [42].

8.   EFFECT OF IMPERFECTIONS IN THE SYSTEM

In the previous sections we have seen how stability influences the
quality of the solutions, determining, in brief, if we can see them in real
world or not. Stability is concerned with imperfections in initial con-
ditions.

We have not considered so far imperfections in the dynamical sys-
tem itself, which can be different from the expected or designed, due
to many reasons, including uncertainties in the production processes.
This can be mathematically translated as uncertainties on the system
parameters, which can be different from the nominal ones.

Warner T. Koiter (1914-1997) [43, 44] was the first to understand
that structural imperfections can significantly influence the load bearing
capacity, causing its strong decrement. Because of imperfections, struc-
tures can also lose stability (or equilibrium) for a value of the governing
parameter much different from the theoretical one (Fig. 25) [45].

Fig. 25. Comparison between Euler and Koiter critical loads.

Studying the effects of the system imperfections on the system
response is known as ‘structural stability theory’ and, although being
initially developed independently, it is nowadays a branch of the bifur-
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cation theory, which gave a mathematical unified framework to the
engineering intuitions. The novel idea of the structural stability theory
is to consider perturbations of the system instead of the perturbations
of initial conditions typical of the classical (Lyapunov) stability theory.

Within structural stability, a bifurcation is named ‘structurally sta-
ble’ if small perturbations in the parameters do not modify the qualita-
tive features of the bifurcation, whereas ‘structurally unstable’ stands
for the opposit case. In this respect, and accordingly to what we have
seen before, saddle-node and Hopf are structurally stable bifurcations
of equilibrium points, while transcritical and pitchfork are structurally
unstable; saddle-node, period-doubling and Neimark-Sacker are struc-
turally stable bifurcations of periodic orbits.

Note that in structurally unstable bifurcations commonly there is
not only a qualitative change of the bifurcation (e.g. from pitchfork to sad-
dle-node), but also the quantitative threshold for bifurcation changes dra-
matically by adding of system imperfections. It is just this kind of prob-
lems, applied to buckling of shell, that triggered the Koiter studies.

A significant example that demonstrates the influence of imperfec-
tions on the load carrying capacity is represented by thin shell structures,
such as tanks [46]. In addition to practical occurrence of the phenome-
non (Fig. 26a), this can also be seen when these kind of structures are
analyzed, for example by the finite element method (Fig. 26b), within a
nonlinear framework. In this case the artificial imperfection introduced
by the discretization adds up to the physical imperfections, and common-
ly helps in detecting the reduction of the load carrying capacity. The sen-
sitivity to imperfections is shown in Fig. 26c, where the buckling load of
a geometrically perfect shell is compared with a shell accounting for geo-
metric imperfections. As it may be seen, there is a considerable reduction
in buckling load with increased imperfection [47].

Fig. 26. Example of thin shell structures: (a) non-symmetrically buckled tank [46],
(b) geometric imperfections introduced by faceted geometry of typical finite element
meshes, (c) comparison between perfect and imperfect shell load-deflection curves.
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9.   DYNAMICAL INTEGRITY

In the 90s, J. Michael T. Thompson (1937-) [48, 49, 50] has recon-
sidered the classical Lyapunov stability concept. He started from observ-
ing that in the classical definition of stability the considered perturba-
tions are infinitesimal, while in the real world even the smallest pertur-
bations have a finite amplitude. Thus, according to Thompson, in the
real world a system should be able to accommodate finite, although
small, changes in the initial conditions, in order to actually experience
the considered solution. Otherwise, it may happen that the considered
solution cannot be seen in practice, even if it is theoretically stable – with
however only infinitesimally small perturbations of initial conditions
allowed. He moved from ‘theoretical’ stability to ‘practical’ stability, and
sometimes the word ‘robustness’ is used to refer to the latter case.

Although this basic idea is simple, its practical implementation is
far from trivial, and gives rise to the research field today known as
dynamical integrity [53].

It is worth noting that Koiter refers to perturbations of the struc-
ture (geometry, materials, etc.), and thus operates in the field of struc-
tural stability (with major effects even in the static case), while
Thompson, like Lyapunov, refers to perturbations of initial conditions,
and contributes to the theory of (nonlinear) dynamical systems [51].

Thompson’s idea can be reformulated by saying that “if the basin
of attraction is not large and compact enough, the solutions cannot be
seen in the real world” [52]. In order to better understand this concept,
it is necessary to define the basin of attraction. A basin is a subset of the
phase space made of initial conditions sharing a common property. If
this property consists of having the same attractor, i.e. converging for-
ward in time to the same solution, this set is named basins of attraction.

In this context, dynamical integrity consists of the systematic
study of topology, evolution, changes by varying parameters, etc. of
basins of attraction. They can be very complex (even fractal), so that
dynamical integrity is not the simple measure of the basin magnitude.

To fix ideas, look at Fig. 27. It represents the same system (a
Duffing equation) at different values of the excitation amplitude, lead-
ing to different basins of attraction. The first one (Fig. 27a) has a large
compact part of the basin (see for example the area within the circle)
and thus it can be safely used in practice. The second one (Fig. 27b), on
the other hand, has a very small compact part of the basin of attraction
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(again, see the area within the circle) and thus it is totally unsafe in prac-
tice, even if it is stable according to Lyapunov.

To underline that dynamical integrity is not simply the study of
the magnitude of the basins of attraction, we remark that the whole area
(not only the compact part) of the basin of the case of Fig. 27b is larger
than the whole area of the basin of Fig. 27a. It is however spread in the
fractal zone, and thus it is useless from a safety point of view. If we con-
sider only the area, we can arrive to the wrong and unsafe conclusion
that the situation of Fig. 27a is better than that of Fig. 27b. Fractality
makes the difference.

Fig. 27. Stable attractors with different basins of attraction:
(a) useful in practice and (b) useless in practice.

While stability is a local property of the attractor because it con-
siders only what happens around the reference solution, dynamical
integrity is a global property. In fact, to discuss the dynamical integrity
it is necessary to study the basins of attraction, that spread around the
whole phase space, and not only in a neighborhood of the attractor.
Changing the paradigm from local to global dynamics means, from the
one hand, to obtain more information, deeper knowledge of systems,
wider use of results, but, from the other hand, to deal with growing dif-
ficulties in terms of numerical costs of the simulations.

First experimental confirmations of the usefulness of dynamical
integrity concepts come from two practical applications, one at the
macro scale (a rotating parametrically excited pendulum) and the other
at the micro-scale (a Micro-Electro-Mechanical-System – MEMS),
respectively [51].
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The rotating pendulum, parametrically excited by the vertical
motion of the pivot, is the orange rod in Fig. 28.

Fig. 28. The experimental rotating pendulum [51].

Rotating solutions, rather than oscillations, are considered because
they are more interesting from a dynamical integrity point of view. This
because they are less robust and, as a consequence, more affected by
perturbations. They have small basins with respect to the competing
oscillations, so that detecting them experimentally is challenging.

Fig. 29a shows the region where rotations are theoretically stable
(in the Lyapunov sense). Fig. 29b, on the other hand, shows that exper-
imentally the rotations can be detected only along a central (w.r.t. the
excitation amplitude p) and finite-magnitude strip, shrinking for low
values of circular frequencies ω. This strip, as it can be easily observed,
is much narrower than the region of theoretical existence. The differ-
ence between the experimental and theoretical regions is too large to be
attributed only to experimental uncertainties.

The results reported in Fig. 30 provide a clear justification of this
difference. In fact, it is possible to see (Fig. 30a) that the dynamical
integrity is large, according to a certain measure [57], only in a specific
interval of increasing excitation amplitude (for fixed values of the exci-
tation frequency), much smaller than the stability interval, which corre-
sponds to a relatively robust attractor with a compact and not eroded
basin. It is just in this interval that we observe rotations experimentally.
This property holds for all frequencies (Fig. 30b), and it is a proof of the
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fact that in practice stable solutions with small basins of attraction can-
not be obtained, which is the keystone of dynamical integrity.

Fig. 29. The behavior chart in the (ω, p) parameter plane: (a) Region of theoretical
existence of solutions, (b) Region of experimental existence of solutions [51].

Fig. 30. (a) The integrity measure as a function of the amplitude p, for a fixed value
of the forcing frequency ω=1.3. (b) Contour plot of the integrity measure

and the experimental data [51].

The second experimental verification of usefulness of dynamical
integrity has been obtained with a MEMS-based capacitive accelerom-
eter, consisting of a proof mass (upper electrode) suspended over a sub-
strate (lower electrode) by two cantilever beams (Fig. 31) [54, 55]. The
experimental setup is shown in Fig. 32 [54, 55, 56].

The frequency response of the accelerometer for a wide range of
frequency (1-400 Hz) is reported in Fig. 33, which shows that around
the resonant frequency there is an interval of frequencies where there
are no bounded solutions. Here the proof mass sticks on the lower elec-
trode, and the well-known dynamic pull-in phenomenon occurs, which
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is unwanted in applications [57]. From a mathematical point of view
this phenomenon is named ‘escape’ since entails escaping from the
potential well and approaching another attractor.

Fig. 31. The MEMS capacitive accelerometer, fabricated by Sensata Technologies
and tested in [55]. (a) The device taken-apart; (b) The device assembled.

Fig. 32. Experimental test setup [55].

Building the frequency response curves for many values of the fre-
quency allows to identify in the parameters space where pull-in occurs
experimentally (Fig. 34).

As done before with the rotating pendulum, the experimental
data are compared with the theoretical predictions of the pull-in region
(Fig. 34). Theoretical pull-in is systematically above the experimental
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pull-in threshold, and a significant difference is observed. Again, this
difference is too large to be ascribed only to the experimental uncer-
tainties, although these are surely present, up to a certain extent.

Fig. 33. A forward frequency sweep response for the capacitive accelerometer tested.
The figure shows three distinctive resonances: super-harmonics, sub-harmonic

and primary resonance.

Fig. 34. Comparison between theoretical and experimental escape [51].

Also in this case the discrepancy can be explained by dynamical
integrity. In fact, by determining the contour plot of the dynamical
integrity measure for the bounded attractors (Fig. 35), it is possible to
see that the experimental threshold of pull-in approximately stands
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along a level curve of the dynamical integrity measure. This shows that
in practice the attractors disappear when the basins of attraction are no
longer large and compact enough, even if the solution is theoretically
stable, according to the dynamical integrity basic principle.

Fig. 35. Level curves of the dynamical integrity measure (Integrity Factor [51]).

10. A CHALLENGE FOR THE FUTURE

By means of the dynamical integrity it is possible to fully under-
stand why and when certain theoretical solutions can be seen in real
world, and when they are safe: the integrity measure must be large
enough.

The basic tools for the dynamical integrity are the basins of attrac-
tion, that are very demanding from a computational point of view, as
they are basically computed by brute-force like algorithms. This is the
reason behind the fact that to date they have been built only for low
dimensional systems, mainly those having one mechanical degree of
freedom only.

But in real world dynamical systems have many degrees of free-
dom, up to infinity for continuous systems, and this calls for the neces-
sity of having basins of attraction for large dimensional systems in order
to investigate dynamical integrity of complex structures. This repre-
sents a challenge for the future, and some initial results have yet been
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obtained (Fig. 36) exploiting high performance computing, such as par-
allel computing [59].

Fig. 36. Basins of attraction a couple of periodically forced Duffing oscillators.
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