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SUNTO. – Analizziamo un sistema di campo di fase in cui l'equazione di bilancio dell'e-
nergia è accoppiata linearmente con un’equazione differenziale ordinaria non-lineare e
non-locale per il parametro d'ordine χ. Quest’ultima equazione è caratterizzata da una
convoluzione spaziale che modella le interazioni a lungo raggio e da un potenziale di
configurazione singolare che costringe χ ad assumere valori nell'intervallo (−1, 1). Pro-
viamo che il corrispondente sistema dinamico è dissipativo ovvero possiede un insieme
assorbente limitato in un opportuno spazio delle fasi.  Stabiliamo quindi l'esistenza di
un attrattore globale di dimensione finita.

***
ABSTRACT. – We analyze a phase-field system where the energy balance equation is lin-
early coupled with a nonlinear and nonlocal ODE for the order parameter χ. The latter
equation is characterized by a space convolution term which models long-range inter-
actions and a singular configuration potential that forces χ to take values in the interval
(−1, 1). We prove that the corresponding dynamical system is dissipative, i.e., it has a
bounded absorbing set in a suitable phase space. Then we establish the existence of a
finite-dimensional global attractor.
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1. INTRODUCTION

Consider a two-phase material (like, for instance, a mixture of ice and
water) which occupies a bounded domain in Ω ⊂ Rd, 1 ≤ d ≤ 3 and
denote by ϑ its relative temperature with respect to a given (constant)
critical one (e.g., the one at which the two phases coexist). Awell-known
model which accounts for phase changes due to the variation of ϑ only
was proposed and analyzed in [15] (see also [14] and references therein).
This is based on the Ginzburg-Landau theory of phase transitions and it
assumes as further variable an order parameter (or phase-field) χ which
characterizes, for instance, the most energetic phase of the material (say
water, in a water-ice system). Using a phenomenological argument, it is
postulated that the evolution of χ is ruled by a gradient flow of the form

χt = −δχE(ϑ, χ), (1)

δχ being the variational derivative with respect to χ of the free energy E
defined by

E(ϑ, χ) =

∫

Ω

(ν
2
|∇χ(x)|2 +W (χ(x))− αϑ(x)χ(x)

)
dx, (2)

where ν > 0 and α ∈ R are given constants, the latter one being related
to the latent heat. HereW is the (density of) potential energy associated
with the phase configuration which can be defined either on a finite
interval (e.g. (−1, 1)) or on the whole real line. In the first case, W is
called singular and the most typical form is the following

W (r) = (1+ r) ln(1+ r)+(1− r) ln(1− r)− λ

2
r2, r ∈ (−1, 1), (3)

where λ ∈ R. Another important class of potentials are defined on R
and are usually called smooth. A typical example is W (r) = (r2 − 1)2

which can also be viewed as an approximation ofW of (3) on [−1, 1].
It is worth observing that the term on the right hand side of (1)

may be viewed as a sort of generalized force driving the evolution of χ,
that is, the phase transformation. Combining now the balance equation
for the internal energy density with (1) we find the evolution system

(βϑ+ αχ)t − γ∆ϑ = f, (4)

ζχt − ν∆χ+W ′(χ)− αϑ = 0, (5)
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inΩ×(0,+∞), where f represents a given (volumic) heat source and all
the constants β, α, γ, ζ, ν are positive. Equations (4)–(5) are also known
as Caginalp phase-field system. An important feature of this rather sim-
ple model is the fact that its (formal) asymptotic limits are well-known
sharp interface problems (see, e.g., [16, 17, 19]). We recall that phase-
field systems are diffuse interface models in the sense that the sharp in-
terface separating two different phases, which is usually very difficult
to handle theoretically and numerically, is replaced by the level set of a
suitable (smooth) order parameter.

From the mathematical viewpoint, system (4)–(5) endowed with
initial conditions and various types of boundary conditions has been in-
vestigated by many authors (see, e.g., [10, 12, 13, 20, 25, 26, 27, 30, 38,
39, 43, 44, 45, 51, 56, 57, 60] and references therein), even under more
general assumptions (for instance, where α is a function depending on
χ). Besides well-posedness results, an important issue is the longtime
behavior of solutions. This behavior is usually non trivial since the set
of stationary states is a continuum if the spatial dimension is greater than
one. Thus the existence of a Lyapunov functional does not guarantee
that a given trajectory converges to a single equilibrium. To prove that
the Łojasiewicz-Simon approach has been employed (see, in particular,
[20, 25, 26, 39, 60]). Regarding the global dynamics, system (4)–(5),
endowed with appropriate boundary conditions, can be interpreted as
a dynamical system in a suitable phase space. This system is dissipa-
tive, i.e., there exists a bounded absorbing set in the phase space. In
addition, it possesses a finite-dimensional global attractor as well as an
exponential attractors (cf., for instance, [10, 12, 13, 20, 38, 44, 45, 51]).

On the other hand, the free energy E can be viewed as an approx-
imation of a nonlocal expression of the following type (see [22] and ref-
erences therein, cf. also [33, 34, 36, 37] for phase separation models)

Enl(ϑ, χ)

=

∫

Ω



∫

Ω

k(x−y)
|χ(x)−χ(y)|2

4
dy+W (χ(x))−αϑ(x)+χ(x)


 dx,

(6)

where k : Rd → R is an interaction kernel satisfying k(x) = k(−x) and
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such that
κ(x) :=

∫

Ω

k(x− y) dy (7)

is bounded and nonnegative (see, for instance, [34, Rem. 2.2] for con-
crete examples). Indeed one can recover (2) by taking

∫

Ω

ν

2
|∇χ(x)|2 dx,

as a first approximation of
∫

Ω

∫

Ω

k(x− y)|χ(x)− χ(y)|2 dy dx,

where ν = 2
∫
Ω k(y)(yi)

2dy is supposed to be independent of coordi-
nate i. In concrete examples k is localized in a neighborhood of 0 so that
ν is related to the thickness of the interface between the components. It
is interesting to point out that this kind of approximation was already in-
troduced by van derWaals in his celebrated paper [54] and since then it
was widely adopted in the mathematical literature on phase transitions.
This might be due to the fact that most people are more used to deal
with PDE rather than nonlocal operators.

The evolution system which derives from the nonlocal free energy
(6) takes the form

βϑt + αχt −∆ϑ = f, (8)

ζχt + κχ+W ′(χ) = J [χ] + αϑ, (9)

in Ω× (0,+∞), where

J [v](x) =

∫

Ω

k(x− y)v(y) dy, x ∈ Ω. (10)

Here we have taken γ = 1 for simplicity. The well-posedness for this
system was firstly established in [6] through a semigroup approach in
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the case Ω = R for a smoothW . In a similar setting, existence of trav-
eling waves for small α was proven in [4] (see [3, 5, 7, 8, 11, 21, 32, 59]
for various results on the nonlocal Allen-Cahn type equation, i.e., (9)
with α = 0, cf. also the recent monograph [1] for closely related prob-
lems). Nucleation simulation by using nonlocal interactions has been
studied in [55], while coarsening has been analyzed in [29]. Phase in-
terface dynamics associated with (8)–(9) was analyzed [23, 24] (cf. also
references therein and [22]) by formal asymptotics (see also [18] for
higher-order approximations and [28] for a related model). The case
of bounded multi-dimensional domains was examined in [9] and [31]
(cf. also [47, 48, 49, 50, 58] for results on more refined models and [2]
for the numerical analysis). Well-posedness issues were discussed in [9]
when ϑ is subject to homogeneous Neumann boundary condition and
W is smooth. In addition, some results concerned with the asymptotic
behavior were demonstrated (e.g., the existence of a bounded absorb-
ing set in one spatial dimension). In [31], the potentialW is smooth as
well, but ϑ is subject to Dirichlet homogeneous. There the main goal
was to establish the convergence of a given trajectory to a single station-
ary state an this fact was proven by means of a generalized version of the
Łojasiewicz-Simon inequality, provided that W is real analytic. Note
that, also in the nonlocal case, the set of stationary states can be a con-
tinuum in dimension greater than one, even though z �→ W ′(z) + κz
is invertible (see [31, Introduction], see also [7] for the nonlocal Allen-
Cahn equation). A similar issue is analyzed in the more recent contri-
bution [40], where equation (9) has an additional relaxation term of the
form εχtt andW is a singular potential (though not of type (3)).

However, none of the above results is concernedwith the existence
of a global attractor even though this is a rather natural feature of phase-
field dynamics (cf. above for the local models). In this respect, it is
interesting to report the related conclusion of the pioneering paper [6]:
Global information, for instance on the existence of an absorbing set and
an inertial manifold …, would also be very useful.

A possible explanation might be that it is not evident how to show
some precompactness for the variable χ (on this point see also [29]). In
this note we establish something more than the existence of a bounded
absorbing set, namely, the existence of a finite-dimensional global at-
tractor. This is achieved by estimating the differences of two trajecto-
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ries which originated from a suitable bounded absorbing set. Such a
difference is controlled by a contractive part depending on the initial
data plus a precompact term. For the latter it is essential (but natural)
to assume some compactness on the linear nonlocal operator J . For the
sake of simplicity, we will take full advantage of the setting developed
in [40]. Thus we will suppose that ϑ satisfies Dirichlet homogeneous
boundary condition, whileW (r) will be a singular potential defined on
(−1, 1) which goes to +∞ as r approaches the pure states ±1. This
will allow us to easily deduce well-posedness since the model studied in
[40] essentially reduces to ours when we take ε = 0. The drawback is
that one cannot take as initial datum for χ a function which takes ±1
values (i.e., pure phases) in some subset of positive measure. In other
(ancient) words corpus inani distinctum, quoniam nec plenum naviter ex-
tat nec porro vacuum ([52]). Nonetheless, with some extra-effort, our
argument can also be applied to other types of potentials like, for in-
stance, (3) (see Remarks 2.6 and 4.4 below) and to different boundary
conditions for ϑ (e.g., homogeneous Neumann).

The paper is organized as follows. In the next section we discuss
well-posedness issues. Section 3 contains a basic uniform in time esti-
mate which is exploited in Section 4 to show that our problem defines
a dissipative dynamical system on a suitable phase space. Then we con-
clude with our main result: the existence of a finite-dimensional global
attractor.

2. WELL-POSEDNESS

Let us introduce some notation first. SetH := L2(Ω) and V := H1
0 (Ω)

and denote by (·, ·) the scalar product in H and by ‖ · ‖ the induced
norm. In general, ‖ · ‖X will indicate the norm in a generic real Banach
space X . Let V be endowed with the norm ‖ · ‖V := ‖∇ · ‖. Let us
identify H with its topological dual H ′ so that we have the continuous
and compact inclusions V ⊂ H ⊂ V ′. Moreover, we set A := −∆ :
D(A) = H2(Ω) ∩ V → H .

Regarding the potentialW , we suppose

W ∈ C2((−1, 1);R+), lim
r→1−,−1+

W (r) = +∞, (11)

∃λ ∈ R : W ′′(r) ≥ −λ, ∀ r ∈ (−1, 1). (12)
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It is easy to see that (11)–(12) entail

W ′(r)r ≥ W (r)− λr2

2
−W (0), ∀ r ∈ (−1, 1). (13)

Moreover, if v ∈ L∞(Ω) is any function such thatW (v) ∈ L∞(Ω), then

∃ δ = δ
(
W, ‖v‖L∞(Ω)

)
∈ (0, 1) such that − 1 + δ ≤ v(x)

≤ 1− δ for a.e. x ∈ Ω.
(14)

Consider now κ defined by (7) and the nonlocal operator J (cf. (10)).
We require

k ∈ W 1,1(Rd). (15)

Observe that assumption (15) entails that J ∈ L(H;H) is self-adjoint
and compact. Also, J is compact from L∞(Ω) to C(Ω). Taking some
constants equal to one, system (8)–(9) with ϑ subject to Dirichlet homo-
geneous boundary condition and initial conditions can now be written
as follows

ϑt + αχt +Aϑ = f, a.e. in Ω× (0, T ), (16)
χt + κχ+W ′(χ) = J [χ] + αϑ, a.e. in Ω× (0, T ), (17)
ϑ|t=0 = ϑ0, χ|t=0 = χ0 a.e. in Ω, (18)

where
ϑ0 ∈ V, (19)

and
f ∈ H. (20)

Moreover, we suppose that

χ0 ∈ L∞(Ω) s.t. ∃ δ0 ∈ (0, 1) : −1 + δ0 ≤ χ0 ≤ 1− δ0 a.e. in Ω,
(21)

where the latter property is equivalent to say thatW (χ0) ∈ L∞(Ω).
Well-posedness can be proven arguing as in the proof of

[40, Thm.2.1] with ε = 0 (cf. also [40, Rem.2.7])
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Theorem 2.1. Let (11)–(12), (15), (19)–(21) hold. Then, for any given
T > 0, there exists one and only one pair (ϑ, χ) such that

ϑ ∈ L2(0, T ;D(A)) ∩H1(0, T ;H) ∩ C0([0, T ];V ), (22)
χ, W (χ) ∈ L∞(0, T ;L∞(Ω)), χt ∈ L2(0, T ;L∞(Ω)), (23)

which solves (16)–(18). Moreover, there exists δ = δ(W,k0, κ, α, f, δ0) ∈
(0, 1) such that

−1 + δ ≤ χ(t) ≤ 1− δ a.e. in Ω,

for almost any t ∈ (0, T ). Next, given two triplets (ϑ0,1, χ0,1), (ϑ0,2, χ0,2)
of initial data satisfying conditions (19)–(21) (the latter w.r.t. possibly dif-
ferent constants δ0i > 0, i = 1, 2) and denoting the corresponding solu-
tions by (ϑ1, χ1), (ϑ2, χ2), respectively, we have the continuous depen-
dence estimate

‖(ϑ1 − ϑ2)(t)‖+ ‖∇(ϑ1 − ϑ2)‖L2(0,t;H) + ‖(χ1 − χ2)(t)‖
≤ Λ0

(
‖ϑ0,1 − ϑ0,2‖+ ‖χ0,1 − χ0,2‖

)
, ∀ t ∈ [0, T ], (24)

where the positive constant Λ0 depends on T , Ω,W , k0, k1, α, f , and on
the initial data (in particular, on δ0i, i = 1, 2).

Remark 2.2. To establish existence instead of the fixed-point technique
used in [40] one can use a vanishing viscosity argument like in [31].

We also have a higher-order control for the temperature differ-
ence, namely,

Corollary 2.3. Let the assumptions of Theorem 2.1 hold. In addition to
estimate (24) we have

‖∇(ϑ1 − ϑ2)(t)‖
+ ‖A(ϑ1 − ϑ2)‖L2(0,t;H) ≤ Λ1

(
‖ϑ0,1 − ϑ0,2‖V + ‖χ0,1 − χ0,2‖

)
,

(25)

for all t ∈ [0, T ] where Λ1 is a positive constant similar to Λ0.

Proof. It suffices to write equation (16) for ϑ1 − ϑ2, multiplying by
A(ϑ1 − ϑ2) recalling (17) and using (24).
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Remark 2.4. Assumption (15) is satisfied by concrete examples of inter-
action kernels like the ones mentioned in [34, Rem. 2.2].

Remark 2.5. Assumptions (19) and (20) can be weakened as follows

ϑ ∈ D(A
ρ
2 ), f ∈ D(A(ρ−1)/2), (26)

where ρ ∈ (34 , 1). In this case, we recall that D(A�) ⊂ H2�(Ω) ↪→
L∞(Ω) since the spatial dimension is three at most. In this case estimate
(25) becomes

‖A
ρ
2 (ϑ1 − ϑ2)(t)‖+ ‖A

ρ+1
2 (ϑ1 − ϑ2)‖L2(0,t;H)

≤ Λ1

(
‖A

ρ
2 (ϑ0,1 − ϑ0,2)‖+ ‖χ0,1 − χ0,2‖

)
, ∀ t ∈ [0, T ].

Remark 2.6. The second assumption (11) does not allow us to consider
the presence of pure phases in the system (see also (21)). Note that,
for instance, potentials like (3) should be bounded in [−1, 1]. This case
can still be handled if we deal with the Allen-Cahn equation only and
temperature is assumed to be given (see Remark 4.4 below). However,
system (8)–(9) with more general potentials require further arguments
and have been analyzed elsewhere (see [41]).

3. A DISSIPATIVE ESTIMATE

Here we establish some uniform in time estimates which are essentially
contained in the proof of [40, Thm.2.1] taking ε = 0.

Theorem 3.1. Let the assumptions of Theorem 2.1 hold. Then the unique
solution (ϑ, χ) to (16)–(18) satisfies the following estimate

‖ϑ(t)‖2V + ‖W (·, χ(t))‖L∞(Ω) ≤ C0(1 + cδ0 + ‖ϑ0‖2V )e−ςt +C1, (27)

for any t ≥ 0. Here ς , C0 and C1 are positive constants which depend on
Ω, λ,W (0), k1, α and f at most, while cδ0 > 0 depends on δ0 andW .

Proof. Let us multiply equation (16) by ϑ(t)+ ξAϑ(t) for some given
ξ > 0 to be chosen in the sequel. Integrating over Ω, we get

d
dt

(
1

2
‖ϑ‖2 + ξ

2
‖∇ϑ‖2

)
+ ‖∇ϑ‖2 + ξ‖Aϑ‖2 = (f − αχt, ϑ+ ξAϑ).
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Consider now equation (17). Multiplying it by χt(t) + ηχ(t), where
η > 0 will be fixed in the sequel, and integrating over Ω we find

d
dt

(
η

2
‖χ‖2 + 1

2
(κχ, χ) + (W (χ), 1)

)
+ ‖χt‖2 + η(κχ, χ)

+ η(W ′(χ), χ) = (J [χ] + αϑ, χt + ηχ).

Adding the two identities we obtain

d
dt

E + ‖∇ϑ‖2 + ξ‖Aϑ‖2 + ‖χt‖2 + η(κχ, χ) + η(W ′(χ), χ)

= (f, ϑ+ ξAϑ)− ξα(χt, Aϑ) + (J [χ], χt + ηχ) + ηα(ϑ, χ),

where, for all t ≥ 0,

E(t) = 1

2
‖ϑ(t)‖2 + ξ

2
‖∇ϑ(t)‖2 + η

2
‖χ(t)‖2

+
1

2
(κχ(t), χ(t)) + (W (χ(t)), 1).

Recalling (13), (15) and the fact that |χ| ≤ 1 almost everywhere in Ω×
(0, T ), for any given T > 0, it is not difficult to choose ξ and η such that

d
dt

E + c1E + c2
(
‖Aϑ‖2 + ‖χt‖2

)
≤ c3 + c4‖f‖2, (28)

where ci, i = 1, . . . , 4, are positive constants. In particular, c1 and c2
depend on α, while c3 depends on Ω, λ, W (0) and k1. Here we have
also used the Young and Poincaré inequalities.

We now argue as in [40, Proof of Thm.2.1] and we test (17) by
χt+σχ, for some σ > 0 to be properly selected, but we do not integrate
over Ω. We have

d
dt

G + (χt)
2 + σκχ2 + σW ′(χ)χ = (J [χ] + αϑ)(χt + σχ), (29)

where

G(x, t)= σ

2
(χ(x, t))2+

1

2
κ(x)(χ(x, t))2+W (χ(x, t)), a.e. in Ω, t ≥ 0.
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Reasoning as before and using Young's inequality, we get

d
dt

G(x, ·) + c5G(x, ·) + c6(χt(x, ·))2

≤ c7(1 + |ϑ(x, ·)|2), for a.a. x ∈ Ω,

where ci, i = 5, . . . , 7 are positive constants depending at most on Ω, λ,
W (0), k1 and α. Thanks to the continuous embeddingD(A) ⊂ L∞(Ω),
we deduce

d
dt

G(x, ·)+c5G(x, ·)+c6(χt(x, ·))2≤ tc8(1+‖Aϑ‖2), for a.a. x∈Ω.

(30)
If we multiply the above equation by c9 = c2

2c8
and we add it to (28), we

obtain

d
dt

(E+c9G(x, ·))+c1E+c9G(x, ·)+
c2
2
‖Aϑ‖2+c10‖χt‖2 ≤ c11(1+‖f‖2),

(31)
for almost any x ∈ Ω.

Applying now Gronwall's inequality to (31) we get, for all t ≥ 0,

E(t) + c9G(x, t) ≤ (E(0) + c9G(x, 0)) e−µt

+
2c11
µ1

(
1 + ‖f‖2

)
, for a.a. x ∈ Ω,

where µ1 = min{1, c1}, which yields (27).

4. EXISTENCE OF THE GLOBAL ATTRACTOR

A consequence of inequality (27) is that B(R) = {u ∈ V : ‖u‖ ≤
R} for a fixed R >

√
C1 is absorbing for ϑ(t) as well as for W (χ(t)).

Therefore, consider, for instance,

X = B(R)× {v ∈ L∞(Ω) : |v| ≤ 1− δ1, a.e. in Ω}, (32)

where δ1 ∈ (0, 1) is such that

{r ∈ (−1, 1) : W (r) ≤ R2} ⊆ [−1 + δ1, 1 + δ1].
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If, for each (ϑ0, χ0) ∈ X and any t ≥ 0, we define

S(t)(ϑ0, χ0) = (ϑ(t), χ(t)),

then, thanks to (27), there exists t0 > 0 such that S(t)X ⊆ X for all
t ≥ t0. If we endow X with the V × H-metric then we obtain a com-
plete (bounded) metric space and S(t) is strongly (Lipschitz) continu-
ous semigroup on X owing to (24) and (25). We now prove the main
result of this note, namely, the dynamical system (X,S(t)) has a finite-
dimensional global attractor.

Theorem 4.1. Let the assumptions of Theorem 2.1 hold. In addition,
suppose that

λ0 := ess inf
x∈Ω

κ(x)− λ > 0. (33)

Then (X,S(t)) possesses a finite-dimensional connected global attractor.

Proof. Consider (ϑ0i, χ0i) ∈ X , i = 1, 2, set

(ϑ(t), χ(t)) = ((ϑ1 − ϑ2)(t), (χ1 − χ2)(t))

where (ϑi(t), χi(t)) = S(t)(ϑ0i, χ0i) for t ≥ t0, and observe that

ϑt + αχt +Aϑ = 0, a.e. in Ω× (t0,+∞), (34)
χt+κχ+W ′(χ1(t))−W ′(χ2(t))=J [χ]+αϑ, a.e. in Ω× (t0,+∞).

(35)

Let us multiply equation (34) by Aϑ(t). Integrating over Ω, we get

1

2

d
dt

‖∇ϑ‖2 + ‖Aϑ‖2 = −(αχt, Aϑ).

from which, using the Young and Poincaré inequalities, we derive the
estimate

d
dt

‖∇ϑ‖2 + c‖∇ϑ‖2 ≤ cα‖χt‖2.

and, by comparison in (35), we deduce

d
dt

‖∇ϑ‖2 + c‖∇ϑ‖2 ≤ c(k1, δ1, α)
(
‖χ‖2 + ‖J [χ]‖2 + ‖ϑ‖2

)
, (36)
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for all t ≥ t0. On the other hand, multiplying (35) by χ(t) and integrat-
ing over Ω we find

1

2

d
dt

‖χ‖2 + (κχ, χ) + (W ′(χ1)−W ′(χ2), χ) = (J [χ], χ) + α(ϑ, χ),

and (33) entails

1

2

d
dt

‖χ‖2 + λ0‖χ‖2 ≤ (J [χ], χ) + α(ϑ, χ).

Then, Young's inequality gives

1

2

d
dt

‖χ‖2 + λ0

2
‖χ‖2 ≤ cλ0‖J [χ]‖2 + cα,λ0‖ϑ‖2.

Since J is compact and self-adjoint we can find a finite-dimensional
projector Πλ0 such that

‖J [v]‖2 ≤ λ0

4cλ0

‖v‖2 + ‖Πλ0 [v]‖2, (37)

for all v ∈ H . As a consequence we have

1

2

d
dt

‖χ‖2 + λ0

4
‖χ‖2 ≤ cλ0‖Π[χ]‖2 + cα,λ0‖ϑ‖2. (38)

Adding inequality(36) multiplied by µ2 = λ0
8c(k1,δ1,α)

to (38) and
using (37) yield

d
dt

(
µ2‖∇ϑ‖2 + ‖χ‖2

)

+ cµ2‖∇ϑ‖2 + λ0

8
‖χ‖2 ≤ c(λ0, k1, δ1, α)

(
‖Π[χ]‖2 + ‖ϑ‖2

)
.

(39)

Therefore, from (39), we deduce

‖ϑ(t)‖2V +‖χ(t)‖2≤c(λ0, k1, δ1, α)e
−µ3(t−t0)

(
‖ϑ(t0)‖2V +‖χ(t0)‖2

)

+c(λ0, k1, δ1, α)

t∫

t0

(
‖ϑ(τ)‖2+‖Πλ0 [χ(τ)]‖2

)
dτ,

(40)
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for all t ∈ [t0, T ] and any fixed T > t0. Here µ3 is a positive constant
depending on λ0, k1, δ1, α.

We now introduce the following pseudometric in X

dT ((ϑ01, χ01), (ϑ02, χ02))

=




T∫

t0

(
‖(ϑ1 − ϑ2)(τ)‖2 + ‖Πλ0 [(χ1 − χ2)(τ)]‖2

)
dτ




1/2

and we recall that a pseudometric is (pre)compact in X (with respect
to the topology induced by the X-metric) if any bounded sequence in
X contains a Cauchy subsequence with respect to dT (see, for instance,
[46, Def. 2.57]).

Let us prove that dT is precompact in X . Let {(ϑ0n, χ0n)} ⊂ X
(X is bounded) and set (ϑn(t), χn(t)) = S(t)(ϑ0n, χ0n). Thanks to
(22), we have that {ϑn} is bounded in L2(t0, T ;D(A)) ∩H1(t0, T ;H).
Therefore it contains a subsequence which strongly converges in
L2(t0, T, V ). On the other hand, we have that {Πλ0 [χn]} is bounded
in L∞(t0, T ;H). Also, by comparison in (17), we deduce that {(χn)t}
is bounded in L∞(t0, T ;H). Therefore {(Πλ0 [χn])t} is bounded in
L∞(t0, T ;H) as well. Then {Πλ0 [χn(·)]} contains a subsequence which
strongly converges in L2(t0, T ;H). Summing up {(ϑ0n, χ0n)} contains
a Cauchy subsequence with respect to dT .

From (40), we deduce that there exists t∗ > t0 such that

‖S(t∗)(ϑ01, χ01)− S(t∗)(ϑ02, χ02)‖X

≤ 1

2
‖(ϑ01 − ϑ02, χ01 − χ02)‖X

+ C(λ0, k1, δ1, α)dt∗((ϑ01, χ01), (ϑ02, χ02)).

Hence S(t) has a (connected) global attractor (see
[46, Thm. 2.56, Prop. 2.59]) of finite fractal (i.e., box counting) dimen-
sion (cfr. [42, Thm. 2.8.1]).

Remark 4.2. Assumption (33) seems unavoidable when one wants to
investigate the long-time behavior of solutions (cf. [9, (A4)] and [31,
(1.19)]). In particular, thanks to this assumption, if we take f ≡ 0 and
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suppose W real analytic then, on account of [40, Thm. 2.6], we have
that the ω-limit set of any pair (θ0, χ0) satisfying (19) and (21) reduces
to a singleton {(0, χ∞)}, where

κχ∞ +W ′(χ∞) = J [χ∞], a.e. inΩ.

Remark 4.3. On account of Remark 2.5, we could take a larger phase
space by replacing V with Vρ = D(A

ρ
2 ), ρ ∈ (34 , 1), in the definition of

B(R) and endowing X with Vρ ×H-norm.

Remark 4.4. Consider the following equation

χt + κχ+W ′(χ) = J [χ] + g,

where g ∈ L∞(Ω× (0,+∞)). In this case it is possible to show a (uni-
form) strict separation property even whenW is a more general poten-
tial like, e.g., (3). However, one should use a comparison argument like,
e.g., in [39]. Indeed, it is no longer sufficient to show the global uniform
boundedness of W (χ) (cf. (27)). Then one can define a phase space
given by the second component of X (see (32)) and, arguing as above
for the χ component only, prove the existence of a finite-dimensional
global attractor.
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