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SUNTO. Descriviamo la dinamica complessa di un'interfaccia elastica che si
muove in un mezzo disordinato e in presenza di una forza esterna. Quando il valore
della forza esterna è abbastanza piccolo, il moto dell'interfaccia è lento e intermittente.
Due diversi regimi sono osservati. Un primo regime detto di creep si presenta per valori
della forza esterna molto piccoli. Qui il moto è possibile solo per attivazione termica e
l’interfaccia appare per lo più bloccata in profondi stati metastabili separati da grandi
barriere energetiche. Un secondo regime detto di depinning è caratterizzato dalla pre-
senza di moto anche a temperatura nulla grazie ad una dinamica che procede attraverso
riorganizzazioni di grandi porzioni dell’interfaccia dette valanghe. I nostri risultati get-
tano nuova luce sulla transizione tra i due regimi e sulla statistica delle valanghe.

***

ABSTRACT. We describe the complex dynamics of an interface (like a magnetic domain
wall) on a disordered landscape. In presence of a small external drive (i.e. an external
magnetic filed) the motion of the interface is slow and jerky. Two different regimes
can be distinguished: the thermally activated regime where the interface spend most
of the time in deep metastable states separated by large barriers (creep regime) and
the avalanche regime where motion persists also at zero temperature, but it involves
collective re-organizations (depinning). Our results shed light on the interplay between
these two regimes and on the avalanche statistics.
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1. INTRODUCTION

The growth of interfaces in a disordered medium is a longstanding prob-
lemwith important applications for a host of experimental systems. Such
problems can be split into two broad categories: (i) propagating inter-
faces such as magnetic domain walls [1, 2], contact line in wetting [3],
and crack propagation [4, 5, 40]; (ii) periodic systems such as vortex
lattices [7], and charge density waves [8]. In all these systems the ba-
sic physical ingredients are identical: the elastic forces tend to keep the
structure ordered (flat for an interface and periodic for lattices), whereas
the impurities locally promote the wandering (see Fig. 1). From the com-
petition between disorder and elasticity emerges a complex energy land-
scape with many metastable states. This results in glassy properties such
as hysteresis and history dependence of the static configuration.

If we consider an interface at equilibrium with the random envi-
ronment, scaling arguments due to Larkin [9] show that below four (in-
ternal) dimensions, displacements grow unboundedly with the distance,
resulting in rough interfaces even at zero temperature. The roughness
exponent, ζeq, characterise the spatial wandering of the interface and
depends only on the correlation of the disorder, the dimension of the
interface, and the nature of the elastic forces.

The competition between disorder and elasticity manifests also in
the dynamics of such systems. Among the dynamical properties, the re-
sponse of the system to an external force f is specially crucial, both from
a theoretical point of view and respect to measurements. Indeed, in most
systems the velocity v versus force f characteristics is directly measurable
and is simply linked to the transport properties (velocity-applied mag-
netic field for magnetic domain walls, crack velocity-elastic energy re-
lease rate G,...). Different dynamical regimes can be observed as shown
in Fig. 2.

The Creep regime. It is natural to expect that under the action of a
small applied force, at zero temperature, the system remains pinned and
only moves until it locks on a local minimum of the tilted energy land-
scape. In this regime, the system is expected to move through thermal
activation. What is the nature of this motion and what is the velocity?
The first model of such a motion, called TAFF (Thermally Assisted Flux
Flow) model, found a linear response [10]. The idea is to consider that a
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Fig. 1 − A one dimensional interface (domain wall) living in a two dimensional space
(film). The position of the interface is determined (provided there are no overhangs or
bubbles) by the displacement u from a flat configuration. The roughness of the interface is

characterised by the exponent ζ, (u(r)− u(0)) ∼ rζ .

blob of pinned material has to move in an energy landscape with charac-
teristic barriersUb as shown in Fig. 3. The external force f tilts the energy
landscape making forward motion possible. The barriers are overcome
by thermal activation (hence the name: Thermally Assisted Flux Flow)
with an Arrhenius law. If the minima are separated by a distance a the
velocity is

v ∝ e−(Ub−fa/2)/T − e−(Ub+fa/2)/T ≃ e−Ub/T f (1)

The response is thus linear, but exponentially small. However, this ar-
gument is grossly inadequate for a glassy system. The reason is easy to
understand if one remembers that the static system is in a vitreous state.
In such states a characteristic barrier Ub does not exist, since barriers are
expected to diverge as one gets closer to the ground state of the system.
The TAFF formula is then valid in systems where the glassy aspect is
somehow killed and the barriers do saturate. This could be the case for
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Fig. 2 − The velocity v-f characteristic of a disordered elastic system. At zero temperature
the system stays pinned until a critical force fc is reached. At finite temperature a motion
can occur even for forces below threshold f < fc since the barriers to motion can always

be passed by thermal activation.

example for a finite size interface. When the glassy nature of the system
persists up to arbitrarily large length scales the motion is actually domi-
nated by barriers which diverge as the drive f goes to zero. To evaluate
the size of these barriers, scaling arguments rely on strong assumptions
such the use of statics properties to describe an out of equilibrium system
[11]. This phenomenological analysis, confirmed by a functional renor-
malization group calculation [12], leads to the so called creep formula

v ∼ exp(−C f−µeq/T ) (2)

where µeq is an equilibrium critical exponent. This formula has recently
been verified by experiments on magnetic domain walls [1, 2].

The depinning regime At larger drive, the system follows the force
f , even at zero temperature, and acquires a non-zero asymptotic veloc-
ity v. What is the depinning threshold fc below which the interface is
immobile and above which a steady-state motion sets in? An estimate of
fc can be obtained via scaling arguments [9] or computed numerically
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Fig. 3−Left: In the Thermally Assisted Flux Flow (TAFF) [10] a region of pinnedmaterial
is considered as a particle moving in an energy landscape characterized by characteristic

barriers Ub. This leads to a small but linear response.

by an exact algorithm [13]. Close to fc the driven dynamics proceeds
by discontinuous collective rearrangements called avalanches. The size
of these rearrangements grows as we approach to the threshold and, at
the transition f = fc, the avalanche statistics is expected to be scale
free [14]. In analogy with equilibrium critical phenomena, the scaling
behaviour is characterised by universal critical exponents, such as the
correlation length exponent, νdep, related to the linear extension of the
avalanches (ξ(f) ∼ |f −fc|−νdep) or the velocity exponent, βdep, defined
as v ∼ (f − fc)

βdep . The value of these exponents has been determined
by analytical techniques such as the functional renormalization group
[15, 16] and by numerical approaches [17].

In this paper we discuss the recent advanced in our comprehen-
sion of the dynamical phase diagram shown in Fig. 2. In particular, in
Section 2 we account for a unified description of the dynamics below
fc and in particular we explain how to match the creep regime with the
depinning transition [18, 19]. In Section 3 we focus on the depinning
transition and characterize the critical force and the avalanche statistics.
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Fig. 4 − Low temperature dynamics of the driven elastic string below the depinning thresh-
old: the optimal path to escape from a given metastable configuration α pass through a sad-
dle configuration β that can relax deterministically to the next metastable configuration γ

with Eγ < Eα.

2. DEPINNING VS CREEP: THE DYNAMICAL PHASE DIAGRAM BELOW
THRESHOLD

2.1 Creep formula: a divergent length scale when f → 0

The slow dynamics of the interface for f → 0, so-called creep, is con-
trolled by thermally activated jumps of correlated regions over the pin-
ning energy barriers separating different metastable states. Scaling argu-
ments are based on the assumption that the dynamical barriers of this
out-of-equilibrium system can be determined purely from the statics.

In general three different dynamical steps can be isolated (see
Fig. 4): (i) Starting from a deepmetastable state, α, the interface explores
the neighborhoods jumping up and down over energy barriers. (ii) This
continues until a saddle configuration β is found. (iii) Finally the config-
uration β can relax deterministically to a new and deeper
metastable configuration γ. Configurations α and β differ on a length
Lopt while α and γ differ on a length Lrelax.
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Fig. 5 − (a) Zero-temperature dynamical phase diagram. (b) Schematic structure factor for
f > fc. The correlation length ξ fixes the crossover between depinning and fast flow. As
an example, for a one dimensional interface with short range disorder we have ζdep ∼ 1.25

and ζflow = 0.5.

The size of the optimal excitationLopt is obtained by the balance of
the gain in energy of being pinned in a deep metastable state,Epinned(L),
with the gain in energy of moving the interface forward, Edepinned ∼
f ·(uβ(L)− uα(L)). At equilibriumwe have that uβ(L)−uα(L) ∼ Lζeq

and that Epinned(L) ∼ Lϑ, with ϑ = 2ζeq − 1 (this exact relation is due
to the statistical tilt symmetry [20]). The balance gives that

Lopt ∼ f−νeq νeq =
1

2− ζeq
, (3)

which means that Lopt diverges when f → 0.
Moreover, numerical simulations give a clear evidence that the en-

ergy landscape is characterized by a unique energy scale, and that the
energy difference between neighbor metastable states is equal to the en-
ergy barrier separating them [21]. Thus, we expect that the barrier that
the interface has to overcome to escape from the state α grows as Lϑ

opt ∼

f
− 2ζeq−1

2−ζeq . Using the Arrhenius activation, we recover the creep formula
Eq. (2) with µ = (2ζeq − 1)/(2− ζeq).
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2.2 The depinning transition: a divergent length scale when f → fc

Above the critical force and at zero temperature the analogy of the de-
pinning transition with critical phenomena is well understood [14]: As
in a thermodynamic second-order phase transition, the connected two-
point correlation function of the order parameter is characterized by a
correlation length which diverges at the critical point. The steady-state
velocity is the order parameter of the depinning transition and its two-
point correlation function,

⟨(v(x, t)− v)(v(0, t)− v)⟩ ∼ e−|x|/ξ, (4)

indeed diverges for f → f+
c . In practice, this correlation function is not

easily accessible because the steady-state velocities can be obtained only
after a long-time integration of the equation of motion [22].

The correlation length ξ separates two length scales in the manifold
(see Fig. 5a): on scales smaller than ξ, the geometry, i. e. the roughness, of
the interface is characterized by depinning exponents (the exponents of
the critical phase in the language of magnetic transitions). In contrast, on
length scales larger than ξ, the interface is governed by the fast flow expo-
nents (analogous to the exponents of the ferromagnetic ordered phase).
The length ξ can be measured through the power spectrum or structure
factor [23],

S(q) =

⟨∣∣∣∣ 1

L1/2

∫
dx u(x, t) e−iqx

∣∣∣∣2⟩
=

∫
dx e−iqx ⟨u(x, t)u(0, t)⟩, (5)

where the second equality makes use of spatial translation invariance.
For inverse lengths q belonging to a self-affine regimewith a single rough-
ness exponent ζ, the structure factor takes the form

S(q) ∼ q−(1+2ζ).

The crossover between the depinning and the fast-flow regimes can be
conveniently extracted from the change of slope of S(q) (see Fig. 5b).
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Fig. 6 −Dynamical phase diagram, the geometry of the interface in the steady state regime.
Below threshold we expect two divergent correlation length: the activation size Lopt(f)
which diverges as f →0 and the distance from consecutive metastable states ξ(f) which
diverges as f → fc. Below the scale Lopt we expect that the system is at equilibrium,
below the scale ξ(f) the system is at the depinning critical point. How behaves the system

at larger length scales?

Below the depinning threshold fc, at zero temperature, the mani-
fold is permanently pinned. The interpretation of depinning as a critical
phenomenon suggests that a similar diverging length scale should also ex-
ists below fc. Indeed, in standard critical phenomena, for length scales
smaller than the correlation length the system is critical, and crosses over
beyond this correlation length to the broken symmetry phase on one side
of the transition and to the symmetric phase on the other side. An im-
portant question is thus whether an equivalent correlation length is ob-
servable in the limit f → f−

c .
A classical protocol to study the depinning transition below thresh-

old is defined as follows: we prepare the systemwith an initial non-steady
state configuration, for example the flat configuration, and thenwe apply
an external force f < fc. The interface moves forward and re-organize
on a length scale ξ(f) which diverges when f → fc. We will see in
Section 3 that this collective re-organization is a manifestation of the
avalanche dynamics in these systems. The geometry of the line is gov-
erned by the scale ξ: on scales smaller than ξ, the roughness of the in-
terface is characterized by depinning exponents. In contrast, on length
scales larger than ξ, the interface is reminiscent of the non-steady state
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initial condition (in our example it will be flat). This means that, be-
low threshold, a correlation length ξ(f) exists in the transient regime.
It is natural to ask if it is possible to study the steady state regime be-
low threshold. If yes, how behaves the system at large length scales?
In analogy with what happens above threshold one should expect that,
below threshold, the large scale behavior is described by equilibrium ex-
ponents of the f = 0 fixed point. However, as shown in Fig. 6 this does
not match with the creep scaling arguments, for which f = 0 is unstable
fixed point. In others words, for the creep scenario, when f > 0, the
interface is at equilibrium only at length scales shorter than Lopt(f).

2.3 Dynamical phase diagram for T → 0+

In [18, 19] we studied the steady state regime of an interface in the limit
of vanishing temperature. The temperature allows to forget the initial
condition and reach the stationary state. A direct numerical study of the
motion of such systems at low temperature is very difficult for forces be-
low the depinning force. Indeed, in that case, the motion takes place
by thermal activation over barriers leading to extremely long activation
times. In this regime numerical techniques such as the molecular dy-
namics are inefficient. For this reason we introduced a novel numerical
method which allows to follow the motion of an interface at finite tem-
perature, without running into the above-mentioned difficulties. This
method directly implement the dynamics of Fig. 4. We have proved the-
orems that assure that this dynamics is the correct low temperature dy-
namics for a finite interface.

Our results are summarized in Fig. 7. The crossover length, Lopt,
separates two roughness regimes: On length scales smaller than Lopt the
roughness of the interface is described by the equilibrium exponent ζeq,
corresponding to the paramagnetic phase in the language of magnetic
transitions. For distances bigger than Lopt, the roughness is described
by depinning exponents. This is at variance with standard critical phe-
nomenon, where the critical phase at large length scales appears only
at the critical point. Increasing the external force, Lopt decreases and
when the depinning threshold is reached (f → f−

c ), Lopt becomes of the
order of the lattice space. The depinning divergent length scale ξ(f) can
be identified with the characteristic length Lrelax of the creep regime.
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Fig. 7 − Results: (a) Steady state structure factor of the line in the T → 0 limit, averaged
on 1000 samples. (a) S(q) for L = 32, M = 92 and different forces (curves are shifted
for clarity). (b) Summary: The steady state properties of the elastic string at T → 0 are
determined by Lopt (filled symbols) and by ξ. They separate regions characterized by the
equilibrium exponent, the depinning exponent (gray region), and the thermal or flow one.
The divergent length Lrelax (open symbols) is associated only with transient dynamics.

Lines are guides to the eye.

In the creep Lrelax ∼ Lopt, at the depinning transition Lrelax diverges,
while Lopt remains finite.

Our algorithm cannot access very small forces, but our results are
compatible with predictions in the creep regime. In particular, the func-
tional renormalization group [12] predicts that on scales below Lopt the
system is in equilibrium and that scales larger thanLopt are characterized
by deterministic forward motion.

3. AVALANCHE DYNAMICS

The driven dynamics of an elastic interface proceeds by discontinuous
collective rearrangements. We have introduced two different type of re-
arrangements: the activated rearrangements of scale Lopt and responsi-
ble of the creep regime, and the deterministic re-arrangements of scale
Lrelax and called avalanches. Here we focus on avalanches.

Avalanches are observed in a number of systems. Some examples
are the Barkhausen noise in magnets [24, 25], dislocations and crack
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Fig. 8 − Consider an interface pinned in a metastable state in the presence of a force f . If
we apply an additional infinitesimal force f → f + δf the metastable state can become
unstable and re-organize on very large length scale. The characteristic (maximal) size of

the avalanche is called Sm and diverges when we approach the depinning transition.

propagation [26, 27], and stick-slip motion of tectonic plates (respon-
sible for earthquakes) [28, 29]. Avalanches have also been studied in
models without quenched substrate disorder, such as sandpile models
and granular matter [30, 31].

Important characteristics of avalanche motion are its scale invari-
ance, self-organized criticality, and a broad distribution P (S) ∼ S−τ of
the avalanche size S, for sizes S between small- and large-scale cutoffs
Smin ≪ S ≪ Sm. Pinned elastic manifolds are an important proto-
type for a much wider class of phenomena, exceeding physics and reach-
ing for example economy and finance, where extreme (and sometimes
catastrophic) events are sufficiently frequent and large to dominate most
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observables. In this context, it is clearly of importance to understand how
the avalanche-size probability is cutted off at large scales, S > Sm.

Although avalanche motion of pinned manifolds has been stud-
ied for a while [32, 33, 34], most work was focused on measuring the
avalanche-size exponent τ . A scaling argument proposed by Narayan
and Fisher [35] on the assumption that the avalanche density remains
finite at the depinning threshold, relates the exponent τ with the rough-
ness exponent ζ via:

τ = 2− 2

d+ ζ
. (6)

Here ζ is the roughness exponent at the depinning transition. On the
other hand the cut-off of large avalanches depend either on finite size
effects either on the value of the external force. In the latter case scaling
arguments give:

Sm ∼ Ld+ζ
relax ∼ |f − fc|−

d+ζ
2−ζ . (7)

To describe the full statistics of avalanches we have to specify how the
dynamics is implemented for a system of finite size L. An intuitive pro-
tocol, used in experiments of Barkausen noise, is shown in Fig. 8 where
the interface is prepared in a metastable state at force f = 0 and force
is slowly increased up to the critical value fc. Avalanches obtained using
this method are not identically distributed because the cut-off Sm de-
pends on the distance to the critical point which is not constant during
the evolution.

In our works we have replaced the external force f with a an exter-
nal parabolic potential to provide a proper definition of the steady state
avalanche dynamics. To be more precise, the zero-temperature Langevin
dynamics is described by the equation of motion:

∂tu(x, t) = Fw(t)(x, u(x, t)) (8)

Fw(x, u(x)) = m2(w − u(x)) + c∇2u(x) + F (x, u(x)),

where Fw(x, u) is the total force acting on the manifold, c is the elastic
constant and F (x, u) is the random pinning force. The parabolic po-
tential is centred in w and its curvature, m2, acts as a mass for the field
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u. For random field (RF) disorder, F (x, u) is short-ranged with correla-
tions F (x, 0)F (x′, u) = ∆0(u)δ

d(x−x′). For random bond (RB) disor-
der this force is derived from a short-ranged random potential V (x, u),
F (x, u) = −∂uV (x, u).

Starting from an arbitrary initial condition uinit(x), and givingw =
w0, the manifold moves to a locally stable state uw0(x), i.e., a zero-force
stateFw0(x, uw0(x)) = 0which is stable to small deformations. Increas-
ing w, u(x) increases slightly, while the configuration remains stable. At
some w = w1, the state becomes unstable and the manifold moves until
it is blocked again in a new locally stable state uw1(x). We are interested
in the centre of mass displacement

u(w) = L−d

∫
dxuw(x). (9)

The function u(w) exhibits jumps at discrete values of w and is in gen-
eral dependent on the initial condition. However, due to the no-passing
rule [36], we can prove that there exists a w∗ > w0 such that the orbit
uw>w∗(x) becomes independent of the initial condition uinit(x), andw0.
A stationary state is thus reached after a finite w − w0, on which we fo-
cus. In Fig. 9 we show how the algorithm works, for dw very small we
are able to isolate a single avalanche event.

3.1 Critical force and autocorrelation function

It is useful to introduce the process [37]:

x(w) = m2 [w − u(w)]. (10)

For a given location of the parabolic well, x(w) represents the average
force on the elastic interface in presence of a parabolic well. This force
should is compensated by the presence of the impurity which pinned the
system. The critical force for this system is thus given by:

fc(m) = x(w) = m2 [w − u(w)] (11)

when m → 0 we have fc(m) → fc (fc(m) is independent of L if
Lm ≫ 1). In Fig. 10 we show a typical realization of the process x(w).
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w+dwwu(w) w+dwwu(w+dw)u(w)

Fig. 9 − For a givenw the manifold moves to a metastable state uw(x), i.e. a state dynam-
ically stable to infinitesimally small deformations. Then one increases w, and a smooth
forward deformation of uw(x) results (for smooth short-scale disorder) while the state re-
mains stable. At some w = w1 the state becomes unstable and the manifold, for w = w+

1

moves until it is blocked again in a new metastable state uw1(x) (also locally stable). This
process is called an avalanche and the centre of mass u(w) has a jump located at w = w1.

We see that, due to the presence of avalanches, this process display ver-
tical jumps and fluctuation around the mean value. The statistical tilt
symmetry assures that the quadratic part of the hamiltonian (and thus
the mass m) is not renormalized. This means that the length associated
to the bare mass Lm = 1/m fixes the distance from the critical point
(located at fc) asm1/ν = m2−ζ . The finite size effects on the force takes
then the form:

fc(m) = fc + c1m
2−ζ + . . . . (12)

The fluctuations around this value depend on L and m. In the limt
L ≫ Lm = 1/m, the interface can be modelled as a collection of in-
dependent interfaces of size Lm and the central limit theorem assures
that fluctuations should decrease as

√
Lm/L. On the other hand using

that the distance from the critical point ism1/ν = m2−ζ and thatw scales
as Lζ

m we can write

x(w) = fc(m)+
m1/ν√
L/Lm

y(w/Lζ
m) = fc(m)+

m3/2−ζ

√
L

y(wmζ), (13)
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Fig. 10 − Left: Typical realization of the process x(w). Right: Critical force, finite size
effect study.

where the rescaled process y(z) is independent of m and L as m → 0
and Lm � 1. Approaching the critical point y(z) displays universal
behavior and becomes independent of most microscopic details. Using
the set up with the parabolic well we can measure the autocorrelation
function of x(w):

m4 [w − u(w)][w′ − u(w′)]
c
= L−d∆m(w − w′).

∆(w) = m3−2ζ∆̃(wmζ) (14)

where∆m(w) → ∆(w) asm → 0 and ∆̃(z) is the autocorrelation func-
tion of the process y(z).

We have studied the behavior of the critical force fc(m) for two
classes of disorder the RF and the RB. From (14) one has

√
∆(0)m ∼

m2−ζ , yielding a parameter-free linear scaling shown in Fig. 10 [37]. For
largem the scaling is non-linear, while for smallerm it is linear up to the
scale where the correlation length becomes of the order of L (mL ≈ 5).
The critical force of the infinite system is defined here in an unambiguous
way, as fc = fc(m = 0). One can see on Fig. 10 that the slope, c1, of the
two curves coincides. Indeed, c1 is a universal amplitude, depending on
microscopic details only through the renormalized elastic coefficient c;
here c ≈ 1 for both models of Fig. 10.
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3.2 Avalanche statistics

We can now study in detail the avalanche statistics [38]. The size S of an
avalanche is defined as the area swept by the line as it jumps between the
two consecutive metastable states. The distribution of avalanche sizes is
expected to exhibit universality, i.e. independence of short scale details,
for sizes S > Smin. The short-scale cutoff Smin corresponds to the area
spanned by a single monomer on the scale of the discretization of the
disorder (in our unitsSmin ≃ 1). We define the (normalized) distribution
of avalanche sizes P (S), as well as its moments

⟨Sn⟩ = 1

N

N∑
i=1

Sn
i =

∞∫
0

dS SnP (S) (15)

from the sequence of measured avalanches Si, i = 1, . . . , N .
In the limitm = 0 a critical point is reached, resulting in a power-

law distribution of avalanche sizes. To properly define the problem, in-
cluding the stationary measure, it is essential to consider a smallm > 0.
Then, the correlation length Lm = 1/m is large in the small-m regime
considered here. As a result, the distribution of avalanche sizes is cut-off
by the large scale Sm ≫ Smin. Using the setting with a parabolic well
the large scale cut off is expected to scale as Sm ∼ Ld+ζ

m ∼ m−d−ζ at
small m. It is useful to express Sm in terms of the moments ⟨Sn⟩. The
definition depends on the value of τ , the critical exponent of avalanche
size statistics.

• For τ < 1 Smin → 0, ⟨S⟩ ∼ Sm

• For τ > 1 Smin must be finite in order to have finite moments. In
particular the moments write ⟨Sn⟩ ∼ Sn+1−τ

m Sτ−1
min , so that we can

define

Sm :=
⟨S2⟩
2⟨S⟩

. (16)

The scale Sm is important as it allows to define universal functions.
In the variable s := S/Sm avalanche statistics becomes universal. Nev-
ertheless, if the exponent τ satisfies 2 > τ > 1, which is the case here,
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then the distribution of avalanche should always depend on Smin which
assures a proper normalization.

A fully universal quantity is the function p(s), defined via the rela-
tion:

P (S)dS =
⟨S⟩
Sm

p

(
S

Sm

)
dS

Sm
. (17)

The function p(s) is universal and depends only on the space dimension
d. Note that the normalized probability P (S) depends on the cut-off
Smin via the first moment ⟨S⟩ which cannot be predicted by the theory,
hence is an input from the numerics. It is important to stress that while
the function p(s) is universal and convenient for data analysis, it is not
a probability distribution and it is not normalized to unity. Rather, it
satisfies from its definition (17) and using (16), the two normalization
conditions

⟨s⟩p =

∫
ds sp(s) = 1 (18)⟨

s2
⟩
p

=

∫
ds s2p(s) = 2 . (19)

A practical algorithm to compute p(s) from a sequence S1, S2, . . . of
avalanches is defined as:

• compute ⟨S⟩ and ⟨S2⟩

• compute Sm = ⟨S2⟩
2⟨S⟩

• compute s1 = S1/Sm, S2/Sm, . . . sn = Sn/Sm

• make the histogram of the si

• multiply the heights of the histograms by ⟨S2⟩
2⟨S⟩2 = Sm

⟨S⟩

The rescaled avalanche-size distribution can be written as

p(s) = s−τf(s) (20)
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Fig. 11 − The function p(s) for RF and RB disorder (d = 1). A fit with a power law gives
the exponent τ = 1.08± 0.02. The agreement with Eq. (6) is discussed in the text.

where τ is the avalanche-size exponent, and f(s) the universal cut-off
function1, which tends to a constant for s → 0.

For the present model, the only analytical prediction concerns the
exponent τ , via the above mentioned conjecture [35] of Eq.(6). For d =
1, a direct power-law fit of our numerical data gives

τd=1
num = 1.08± 0.02 . (21)

This value has to be compared with the conjecture of Eq. (6). The rough-
ness exponent is known numerically with a good accuracy from system
sizes (L ∼ 103) and m = 0, as ζ = 1.26 ± 0.01 [17]. This value for ζ
gives τconj = 1.115 ± 0.005. Hence the estimate (21) is slightly smaller,
but still consistent with the value of τ obtained from the conjecture.

Exact solution of a mean field toy model of avalanches allows to
compute the full universal scaling function:

fMF(s) =
1

2
√
π
e−s/4 . (22)

1 By universal we mean w.r.t. short scale details. Of course this function is character-
istic of a large scale cut-off provided by a parabolic well.
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Fig. 12 − Function f(s) for RF disorder (d = 1). The red solid curve is given by Eq.(22),
the black dashed line by Eq.(23), with A = 0.852, B = 1.56 and C = 0.56. Left: Blow

up of the power-law region. Right: Blow up of the tail region.

which is expected to be exact above the upper critical dimension d =
duc = 4. The Functional Renormalization Group calculation gives a
finite dimension correction to the mean field result, at the first order in
the ε = 4− d expansion we have the following prediction [39]

f(s) =
A

2
√
π
exp

(
C
√
s− B

4
sδ
)

, (23)

with exponents

τ =
3

2
+

3

8
α =

3

2
− 1

8
(1− ζ1)ε (24)

δ = 1− α

4
= 1 +

1

12
(1− ζ1)ε (25)

where α = −1
3(1 − ζ1)ε and ζ1 = 1/3 for the RF class, relevant to the

present study. The constants A, B and C depend on ε, and must satisfy
the normalization conditions (18), (19). At first order in ε they are C =
−1

2

√
πα, B = 1−α(1+ γE

4 ), A = 1+ 1
8(2− 3γE)α, γE = 0.577216. As

usual, the one-loop results for the exponents τ , δ and for the parameters
A, B, and C are exact up to O(ε2).

Our numerical data for the avalanche-size distribution p(s) are
plotted in Fig. 12, with emphasis either on the power-law region or on
the tail. Note that for the different values of m and L used here, the



AVALANCHE DYNAMICS IN DISORDERED SYSTEMS  331

data have converged, with the exception of the last point for very large
avalanches (over-suppressed by the finite size of the interface in the small-
est samples), and the region of very small avalanches (which are cut off
at s ≈ 1/Sm).

4. CONCLUSIONS

In Conclusionwe have discussed the results on two aspects of the dynam-
ics of an elastic interface in random medium: the activated dynamics or
creep, and the avalanche dynamics or depinning.

Despite its relevance for experiments and the theoretical efforts
made, the description of the creep regime remains a very challenging
problem. Most of the few predictions proposed in litterature are based
on strong assumptions that should be verified, at least numerically. In
particular it should be shown clearly that a small drive does not change
the short scale properties of the interface that remains locally in equilib-
rium even when it is driven in an out of equilibrium steady state. Ver-
ifications are needed not only for the assumptions of creep theory, but
for the predictions too. It is true that the main prediction, i.e. the creep
formula for the velocity, has received an important confirmation with
the experiment of magnetic domain wall [1], but on one side this is the
unique experiment that clearly shows a creep regime and on the other
side numerical simulations are still far to be conclusive. New algorithms
have been developed to capture the secrets hidden in the deepmetastable
states of the disorder landscape. We are actively working in this direc-
tion.

The depinning transition has beenmuchmore understood, but dif-
ferent directions are open for future researches. Let me mention some
directions of my present research activity:

• The description of the universal behavior is of a little help for the
estimation of the threshold above which the interface moves even
at zero temperature. In fracture the estimation of this threshold
should give information about the toughness of the material [40].
This should be true at least for fragile materials for which plasticity
plays a minor role. If this is true, to understand how the threshold
behaves as a function of the impurity concentration, the impurity
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size and the elastic moduli of the material, will allow to control the
toughness of a family of materials. This is a major task in fracture
theory.

• In a real system, the sequence of avalanches as a function of time
display strong correlation in time. In particular the phenomeno-
logical Omori law, verified for the seismic activity, predicts power
law correlations. Unfortunately an elastic interface in the steady
state regime shows a quasi-Poissonian statistics with absence of
correlations, both in time and in intensity. Which is the missing
ingredient in the model? Recently, a model reproducing after-
shock statistics has been proposed [29]. This model incorporates
an internal degree of freedom which relax the contact between the
disordered system and the elastic interface. We studied a simple
model of viscoelastic interface that reproduce a large part of the
observations of the earthquakes statistics [41]

• Collective re-organizations are also observed in the dynamics of
amorphous solids under shear deformation [42, 43]. Here, when
a site slips, it triggers a shockwavewhich in turn can either stabilize
or destabilize other sites. This is at variance with what is observed
in the avalanches discussed so far, where an unstable site can only
destabilize other sites. We have recently introduced a scaling de-
scription of the yielding transition in term of universal exponents
[44].
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