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SUNTO. Si considera un sistema di oscillatori di frequenza elevata accoppiati con un
sistema lento. Si dimostra che l’energia del sottosistema ad alta frequenza varia di poco
per tempi molto lunghi. Il risultato qui ottenuto è indipendente dalle relazioni di
risonanza tra le alte frequenze. In termini più precisi, si denoti con ϵ−1 la più piccola
delle frequenze elevate. Nella prima parte del lavoro si dimostra che l’energia del sistema
ad alte frequenze è sostanzialmente conservata per tempi esponenzialmente lunghi con
ϵ−1/n, dove n è il numero di oscillatori ad alta frequenza. A tal fine si fa uso del risultato
principale di [1]. Nella seconda parte si dà, in forma completa, una nuova dimostrazione
di un risultato analogo valido su tempi dell’ordine di ϵ−N , conN arbitrario. Questo se-
condo risultato è simile a quello ottenuto nel lavoro [4], che ha ispirato la nota presente.

***
ABSTRACT.We consider a system in which some high frequency harmonic oscillators are
coupled with a slow system. We prove that up to very long times the energy of the high
frequency system changes only by a small amount. The result we obtain is completely
independent of the resonance relations among the frequencies of the fast system. More
in detail, denote by ϵ−1 the smallest high frequency. In the first part of the paper we
apply the main result of [1] to prove almost conservation of the energy of the high fre-
quency system over times exponentially long with ϵ−1/n (n being the number of fast
oscillators). In the second part of the paper we give a new self-contained proof of a
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similar result which however is valid only over times of order ϵ−N with an arbitrary N .
Such a second result is very similar to the main result of the paper [4], which actually
was the paper which stimulated our work.

1. INTRODUCTION

In the phase space R2n ⊕ R2d ∋ ((p, q), (P,Q)) we consider a Hamilto-
nian system of the form

H(p, q, P,Q) = hω(p, q) +H0(P,Q, q) , (1)

where

hω(p, q) :=

n∑
j=1

p2j + ω2
j q

2
j

2
(2)

is a system of “fast” harmonic oscillators and H0 is an analytic function
describing a “slow” system (with canonical variables P,Q) and its in-
teraction with the fast system. We are interested in the case where the
frequencies ωj are large, so we define

ϵ :=
1

minj{ωj}
, (3)

and study the system in the limit ϵ → 0.
In the first part of paper we apply the main result of [1] to prove

that hω changes by a quantity which is at most of order ϵ1/n up to times
exponentially long with ϵ−1/n; in the second part we give a new self con-
tained proof of a stability result very close to a result by Gauckler, Heirer
and Lubich [4], which ensures almost invariance of hω over times of or-
der ϵ−N with an arbitrary N . The main point is that all the results are
completely independent of the resonance relations among the frequen-
cies ωj , and thus hold uniformly for all the frequency vectors outside a
cube of side ϵ−1.

We recall that systems of the kind of (1) arise inmany contexts; here
we just mention the problem of the realization of Holonomic constraints,
in which the constraints are modeled by very hard springs and one is
interested in controlling if the dynamics of the slow system converges, as
ϵ → 0 to the dynamics ofH0(P,Q, 0). This is a very subtle question and
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indeed it is well known that, in general, the convergence of the orbits can
occur only for times of order ϵ−1. For longer time scales one can only
pursue weaker results, and actually in [2, 3] (see also [1]), it has been
show that if the frequencies ωj are either completely resonant or fulfill
some Diophantine type inequalities, then hω is an approximate integral
of motion for times exponentially long with ϵ−a with a depending on the
resonance properties of the frequency vectorω. All the constant involved
in the main theorems of [2, 3] depend on the properties of good/bad
approximability of the frequencies by rational vectors.

In their paper [4] Gauckler, Heirer and Lubich used multiscale ex-
pansion to show that by restricting attention to time scales of order ϵ−N

with arbitrary N , one can find a result independent of the resonance
properties of the frequencies, and thus uniform for all frequencies out-
side an n dimensional hypercube of side ϵ−1. The paper [4] was actually
what stimulated the present work.

In the present paper we present two results.
In the first part (Section 2) we look for stability over exponentially

long times, in the spirit of Nekhoroshev theory. The novelty of our first
result with respect to [3] rests in the uniformity of the constants with re-
spect to small changes in the frequencies ω. Our scheme is reminiscent
of that of Lochak in his proof of Nekhoroshev’s Theorem [5]: we use
Dirichlet approximation theorem in order to approximate the frequen-
cies by completely resonant ones and thus to reduce to a perturbation of a
completely resonant system. The error in the approximation byDirichlet
theorem is controlled by a large parameter Q. Then we apply the main
theorem of [1] which allows us to put the system in resonant normal
form up to a remainder which is exponentially small with an effective
small parameter. Some work is required in order to fit into the scheme
of [1]. Then one gets a result in which there is an effective small param-
eter which depends both on Q and on ϵ. So we choose Q as a function of
ϵ in order to minimize the remainder, concluding the proof.

The motivation for the second part of the paper rests in the remark
that if one is interested just in power law times, then the result can be ob-
tained by a normal form construction which is purely algebraic (follow-
ing the original ideas of Birkhoff). The only variant needed with respect
to the standard schemes is the one introduced by [4], namely to fix some
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threshold value α for the small denominators and to consider as reso-
nant all the monomials giving rise to small denominators smaller than
α. Then one can put the system in resonant normal form (in the above
sense) up to a remainder of order ϵ−N . Finally, one has to prove that the
normal form admits an approximate integral of motion. We prove this
last fact using again Dirichlet theorem. We remark that the second re-
sult holds also for Hamiltonians which are not analytic but only infinitely
differentiable.

Acknowledgments. We thank Christian Lubich for pointing out a mis-
take in the first version of the paper and for some comments that led to
considerable improvements of the paper. This research was funded by
the Prin project 2010-2011 “Teorie geometriche e analitiche dei sistemi
Hamiltoniani in dimensioni finite e infinite”.

2. EXPONENTIALLY LONG TIMES

In the phase spaceR2n⊕R2d ∋ ((p, q), (P,Q)), endowed with the usual
euclidean norm, we consider a Hamiltonian system of the form (1) where
H0(P,Q, q) is analytic in an open domain of R2d+n.

We first state the smoothness properties of H0 in a precise form.
For given E0 define the sublevel

SE0 :=
{
(P,Q) ∈ R2d : H0(P,Q, 0) ≤ E0

}
, (4)

and the ball

Bρ :=



(p, q) : ∥(p, q)∥2 :=

∑
j

p2j + q2j
2

≤ ρ2


 . (5)

Remark that SE0 needs not to be compact. Consider the complexifica-
tion of the phase space and denote by B(ζ, R) ⊂ C2n+2d the closed ball
of radius R and center ζ ≡ (p, q, P,Q).

We assume that there exist positiveE∗
0 , E

∗, R∗ such that, by defining

G := B3
√
E∗ × S3E∗

0
, G∗

R∗ :=
∪
ζ∈G

B(ζ, R∗) , (6)
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the functionH0 extends to a bounded analytic function on G∗
R∗ , namely to

a function fulfilling

sup
G∗
R∗

|H0(P,Q, q)| ≤ CH0 . (7)

THEOREM 2.1. Under the above assumptions, there exist positive con-
stants ϵ∗, C1, C2 such that, if 0 < ϵ < ϵ∗ and the initial datum (p0, q0, P 0,
Q0) fulfills

H0(P
0, Q0, 0) ≤ E∗

0 , hω(p
0, q0) ≤ E∗ , (8)

then along the corresponding solution one has

|hω(t)− hω(0)| < C1ϵ
1/n , for |t| ≤ C2 exp

(ϵ∗
ϵ

)1/n
. (9)

The constants ϵ∗, C1, C2 depend only on CH0 and on n.

Remark 2.2. The main point is that the constants do not depend on the
frequencies and are thus uniform for all frequencies fulfilling (3) with ϵ <
ϵ∗.

PROOF. First we remark that by Cauchy inequality for analytic func-
tions one has that the quantities

����
∂H0

∂qj

���� ,

����
∂H0

∂Ql

���� ,

����
∂H0

∂Pl

���� (10)

are bounded on any domain contained in G∗
R∗ , hence the same holds true

for the Hamiltonian vector field XH0 .
To be definite we assume

min{ωj} = ω1 =
1

ϵ
. (11)

According to Dirichlet theorem, for any Q > 1 there exist integers q ≤ Q
and {pj}nj=2 s.t.

����
ωj

ω1
− pj

q

���� ≤
1

qQ1/(n−1)
, j = 2, ..., n . (12)
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The value of Q will be fixed later on as a function of ϵ.
Define a new vector of resonant frequencies ω̃

ω̃1 := ω1 , ω̃j := ω1
pj
q

=
pj
ϵq

, (13)

and

hω̃ :=
n∑

j=1

p2j + ω̃2
j q

2
j

2
, h1(q) :=

1

2

n∑
j=1

(ω2
j − ω̃2

j )q
2
j , f := H0 + h1

(14)
so that the Hamiltonian takes the form

H = hω̃ + f , (15)

as required in [1]. Then (12) becomes
����
ωj − ω̃j

ω1

���� ≤
1

qQ1/(n−1)
, j = 2, ..., n . (16)

Furthermore the flow generated by hω̃ is periodic with frequency ω :=
1/ϵq.

We redefine the norms and the domains in order to fit the scheme
by [1]. So we put

∥ζ∥2∼ ≡ ∥(p, q, P,Q)∥2∼ =
n∑

j=1

|pj |2 + ω̃2
j |qj |2

2
+

d∑
l=1

|Pl|2 + |Ql|2

2

≡ ∥(p, q)∥2∼ + ∥(P,Q)∥2
(17)

G̃ := B̃3
√
E∗ × S3E∗

0
, G̃R̃ :=

∪

ζ∈G̃

B̃(ζ, R̃) , (18)

where B̃ and B̃ are the closed ball in the norm (17).
The relation with the old norms and domains is easily obtained:

the new norm (17) is stronger than the euclidean one:

∥q∥ ≤ ϵ ∥q∥∼ ,
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so, provided ϵ is small enough and Q large enough, choosing R̃ := R∗/2,
one has G̃R̃ ⊂ G∗

R∗ (strictly and with some finite distance between the
boundaries).

We have now to compute the constants involved in the statement
of Theorem 4.1 of [1], namely

ωf :=
1

R̃
sup
ζ∈G̃R̃

∥Xf (ζ)∥∼ ≤ 1

R̃


 sup
ζ∈G̃R̃

∥XH0(ζ)∥∼ + sup
ζ∈G̃R̃

∥Xh1(ζ)∥∼


 .

Using (10) and (7) one immediately sees that the supremum of XH0 is
independent of ϵ and of Q. In order to compute the supremum of Xh1

recall (16), and remark that

ωj

ω̃j
= 1 +

ωj − ω̃j

ω̃j
,

����
ω̃j − ωj

ω̃j

���� =
��� ω̃j−ωj

ω̃1

���
��ωj

ω1
− ωj−ω̃j

ω1

�� ≤
1/qQ1/(n−1)

1− 1
qQ1/(n−1)

≤ 2

qQ1/(n−1)

provided qQ1/(n−1) > 2, from which

����
ω̃j + ωj

ω̃j

���� ≤ 3 ,

�����
ω̃2
j − ω2

j

ω̃jω1

����� ≤
6

qQ1/(n−1)
. (19)

Thus using (17) and (19) the field Xh1 admits the upper bound

∥Xh1(ζ)∥
2
∼ =

n∑
j=1

(ω2
j − ω̃2

j )
2q2j =

n∑
j=1

(ω2
j − ω̃2

j )
2

ω̃2
jω

2
1

ω2
1ω̃

2
j q

2
j ≤

≤ 1

ϵ2

[
sup

j=1,...,n

���ω
2
j − ω̃2

j

ω̃jω1

���
2
]

n∑
j=1

ω̃2
j q

2
j

≤
(

6

qQ1/(n−1)

)2 2

ϵ2
∥(p, q)∥2∼ ,
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which gives

sup
ζ∈G̃R̃

∥Xh1(ζ)∥∼ ≤

(
6
√
2

qQ1/(n−1)

) √
9E∗ + R̃2

ϵ
.

So one can put

ωf ≤ C

[
1 +

1

ϵqQ1/(n−1)

]
, (20)

and the small parameter µ of Theorem 4.1 turns out to be1

µ := C
ωf

ω
≤ Cϵq

(
1 +

1

ϵqQ1/(n−1)

)
≤ C1

(
ϵQ +

1

Q1/(n−1)

)
. (21)

Following [1] p. 604, we choose Q1/(n−1) = ϵ−1/n, so that ϵQ = ϵ1/n

and we can choose µ = C2ϵ
1/n. Defining ϵ∗ := C−n

2 and computing
the other constants in Theorem 4.1 and its corollaries one gets the thesis.

3. POWER LAW TIMES

3.1 Statement

The aim of this section is to give an easy proof of a simplified result, in
which the control of the energy of high frequency oscillators is obtained
only for time scales of order ϵ−N with an arbitrary N . We remark that
for the present result C∞ smoothness is enough. Precisely Theorem 3.1
below is true under the assumption that there exists an interval of values
of E0, ρ s.t., for any k the Ck norm ofH0 is bounded in B3ρ ×S3E0 . Of
course, if one fixes a value of N then finite smoothness is also enough.

THEOREM 3.1. Fix a positive (small) b, then, for any positive (large) N ,
there exists a positive constant ϵ∗(N, b), such that, if ϵ < ϵ∗, and the initial
datum fulfills

E := hω(p, q) < E∗ , H0(P,Q, 0) < E∗
0 , (22)

1Recall that in Dirichlet Theorem q ≤ Q.
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then one has

|hω(t)− hω(0)| ≤ Eb for |t| ≤ ϵ−N . (23)

Remark 3.2. The constant ϵ∗ strongly depends on the dimension n of the
fast system, so the result does not extend to infinite dimensional systems.

Remark 3.3. In the present statement the change of the energy of the high
frequency system is controlled by the parameter b, which is arbitrarily
small, but independent of ϵ. On the contrary, in the paper [4] one has
b ∼ ϵ3/4.

3.2 Proof

We start by preparing the Hamiltonian, subsequently we introduce the
kind of expansion needed for the further developments. Then we prove
an approximation lemma for the frequencies and finally we prove the
normal form lemma that we will use to get Theorem 3.1.

First we scale the variables, the frequencies and the time in a suit-
able way (see also Sections 2 and 4 of [3]). Together, we introduce the
standard complex variables usually needed in order to develop pertur-
bation theory. As in sect. 2 we assume ω1 = minωj .

Thus define

νj := ϵωj , pj =

√
νj
2ϵ

ξj + ηj
i

, qj =

√
ϵ

2νj
(ξj − ηj) , (24)

(in particular one has ν1 = 1) so that, by rescaling time to t′ := ϵt, the
Hamiltonian of the system (still denoted by H) takes the form

H =

n∑
j=1

νjξjηj + ϵH0(P,Q, q(ξ, η)) . (25)

For the new fast variables (η, ξ) we will use the norm

∥(ξ, η)∥2 =
n∑

j=1

νj
(
|ξj |2 + |ηj |2

)
. (26)
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which corresponds to the rescaled energy norm in the original (p, q) vari-
ables.

If we define
ρE :=

√
E , (27)

then
∑

j(p
2
j + ω2

j q
2
j ) ≤ E implies hν ≤ ϵρ2E , which means (ξ, η) ∈

BρE
√
ϵ. Hence, since the variables ξ, η have size of order

√
ϵ, we have

to consider an expansion of the nonlinear terms in both
√
ϵ and in ξ, η.

In other words, the scaling (24) introduces two different dependencies
on

√
ϵ in the Hamiltonian: an implicit one, of size O(

√
ϵ) in the scaled

variables, and an explicit one in the coefficient in front of any monomial
depending on (ξ, η), due to dependence on q only.

As anticipated above the main step of the proof consists in putting
the system in normal form. We now specify in a precise way what we
mean by normal form.

DEFINITION 3.4. Given α > 0, a monomial ξlηm ≡ ξl11 ....ξ
ln
n ηm1

1 ....ηmn
n

is said to be in α-normal form if

|ν · (l −m)| ≤ α . (28)

We are now going to prove that, if α is small enough, then there
exists a non vanishing vector ν̃ such that

h∼
ν
(ξ, η) :=

n∑
j=1

ν̃jξjηj (29)

Poisson commutes with all the monomials in normal form.

LEMMA3.5. FixN > 0, then there exists a non negative sequence {αi}i≥1,
with limi→∞ αi = 0, such that, for every frequency vector ν there exists a
new frequency vector ν̃, depending on αi, which fulfills

sup
j=1,...,n

|ν̃j − νj | ≤
αi

N
, (30)

{
h∼
ν
; ξlηm

}
= 0 , (31)

for all monomials ξlηm in αi normal form satisfying |l|+ |m| ≤ N .
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PROOF. We use again Dirichlet theorem. The form we choose is the
one according to which, for any ν ∈ Rn−1 the inequalities

����νj −
pj
q

���� ≤
1

q1+1/(n−1)
, j = 2, ..., n (32)

have infinitely many solutions q ∈ N, pj(q) ∈ Z. In particular the q’s
form a diverging sequence qi. We identify the sequence qi with the cor-
responding value of q (instead of using i). Define ν̃j := pj/q, j =

2, ..., n − 1, ν̃1 := ν1 = 1 and αq(N,n) := N/q1+1/(n−1). We are
now going to prove that ν̃ · k ̸= 0 with |k| ≤ N implies |ν · k| > αq.
First remark that ν̃ · k ̸= 0 implies |ν̃ · k| ≥ 1/q (since ν̃j are rationals),
so that one has

|ν · k| ≥ |ν̃ · k| − |(ν − ν̃) · k| ≥ 1

q
− |ν̃ − ν||k| ≥

≥ 1

q
− N

q1+1/(n−1)
=

1

q
− αq = αq

[
1

(Nn−1αq)
1
n

− 1

]
,

but, providedαq is small enoughwith respect toNn−1 the square bracket
is bigger than 1 and the thesis follows.

We fix now once for all α as

α ≡ αi ≤
bN

21
. (33)

In the following we are going to construct a canonical transforma-
tion which puts the Hamiltonian in normal form up to order (

√
ϵ)2N =

ϵN . We first introduce the class of polynomials that we will meet in the
construction and the degree that we will assign to each of them.

DEFINITION 3.6. Let U ⊂ S3E∗
0
be an open domain. For s ≥ 0, the

space Ps ≡ Ps(U) is the space of the linear combinations, with coeffi-
cients in C∞(U), of the monomials of the form

(
√
ϵ)a+2ξlηm , (34)
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which corresponds to the rescaled energy norm in the original (p, q) vari-
ables.
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√
E , (27)
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∑

j(p
2
j + ω2

j q
2
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where the indexes fulfill the conditions

a+ |l|+ |m| = s , a ≥ |l|+ |m| . (35)

If g ∈ Ps, then the index s will be called the order of the polynomial g.

In the following, when not needed, we will not specify the domain
U . It is immediate to verify the following Lemma

LEMMA 3.7. Let g1 ∈ Ps1 and g2 ∈ Ps2 , then

{g1; g2} ∈ Ps1+s2 ⊕ Ps1+s2+2 . (36)

PROOF. Indeed

{g1; g2} = {g1; g2}P,Q + {g1; g2}ξ,η ;

the first term at r.h.s. belongs to Ps1+s2+2 and the second one belongs
to Ps1+s2 .

Remark 3.8. Consider {hν ; g}, with g ∈ Ps and s ≥ 1. In this case it,
due to the lack of a prefactor ϵ in front of hν , is immediate to verify that
{hν ; g} ∈ Ps.

Remark 3.9. Moreover, it is useful to stress that both in case of Lemma
3.7 and in the case of {hν ; g}, the parity of the space Ps is preserved by
the Poisson brackets. Due to the structure of the perturbation ϵH0, we
will deal only with even parity spaces P2s.

It is useful to extend the definition to functions of ξ, η,
√
ϵ of class

C∞ and to introduce the space of the functions that will play the role of
remainders.

DEFINITION 3.10. Let F ((P,Q), (ξ, η),
√
ϵ), F ∈ C∞(U × Bρ × B√

ϵ♯
)

for some positive ρ,
√
ϵ♯. We say that F ∈ P̄(U) if each of its Taylor

polynomials in ξ, η,
√
ϵ belongs to some of the spaces Ps(U).

Given a function F ∈ P̄ we can define the projector Πs which
extracts from F its component in Ps.
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DEFINITION 3.11. A function F ∈ P̄(U)will be said to belong toRr(U)
if one has ΠsF = 0, ∀s ≤ r.

Remark 3.12. For anyN one can expandH0 in Taylor series in the vari-
ables ξ, η at order N , getting

ϵH0 =

N∑
s=0

fs +R(N) , fs(P,Q, ξ, η) = ϵ
∑

|l|+|m|=s

alm(P,Q)ξlηmϵs/2

and R(N) having a zero of order N + 1 in the variables ξ, η. Thus one
has fs ∈ P2s and R(N) ∈ R2N+1 (see Remark 3.9).

Remark 3.13. Let F ∈ R2s+1(U), with U ⊂ S3E∗
0
, then one has

supU×Bρ
√

ϵ
|F | ≤ C

√
ϵ
2s+3. The constant depends in particular on U

and on ρ. Similar inequalities hold for the derivatives of F .

The normalizing transformation will be constructed using the Lie
transform ϕχ, namely the time one flow of an auxiliary Hamiltonian
χ ∈ P2r with r ≥ 1. The main properties of the Lie transform are
summarized in the next lemma.

LEMMA 3.14. Let S3E∗
0
⊃ U1 ⊃ U2 ⊃ U3 ⊃ S2E∗

0
be open sets (the

inclusion must be strict) and let 3ρE > ρ1 > ρ2 > ρ3 > 2ρE be positive
parameters. Let χ ∈ Ps(U1) with s ≥ 1. Then there exists ϵ♯, such that,
if ϵ < ϵ♯, then one has

U1 ×Bρ1
√
ϵ ⊃ ϕχ(U2 ×Bρ2

√
ϵ) ⊃ U3 ×Bρ3

√
ϵ . (37)

The constant ϵ♯ depends only on the above sets Ui, on ρi and on the norm
C1(U1) of the coefficients of the development of χ in ξ, η,

√
ϵ.

Let F ∈ Pr, then one has

[F ◦ ϕχ − F ] ∈ Rs+r (38)

and
[hν ◦ ϕχ − (hν + {χ;hν})] ∈ R2s−1 . (39)
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PROOF. The statement on the existence of the flow and the way it
transforms open domains immediately follows from the standard theory
of existence and uniqueness of ODEs.

To get (38) and (39) one uses

d
dt

F ◦ ϕt
χ = {χ;F} ◦ ϕt

χ ,

from which,

F ◦ ϕχ = F + {χ;F}+
1∫

0

(1− s) {χ; {χ;F}} ◦ ϕχs
χ
ds , (40)

which holds both for the case of the function F of the statement and for
the function hν . Then using Lemma 3.7, the fact that {χ;hν} ∈ Ps(U1)
(see Remark 3.8) and standard estimates the thesis follows.

We are now ready to state and prove the iterative lemma which
yields the existence of the normal form.

LEMMA 3.15. There exists a sequence of domains S3E∗
0
⊃ U0 ⊃ U1 ⊃

... ⊃ UN+1 ⊃ S2E∗
0
and a sequence of positive parameters 3ρE > ρ0 >

ρ1 > ... > ρN+1 > 2ρE with the following property: for any 1 ≤ r ≤ N
there exists a positive ϵr, such that, if ϵ < ϵr then there exists a canonical
transformation T (r) : Ur × Bρr

√
ϵ → U0 × Bρ0

√
ϵ, T

(r)(Ur × Bρr
√
ϵ) ⊃

Ur+1 ×Bρr+1
√
ϵ such thatH ◦ T (r) is in normal form at order 2r, namely

∀l ≤ 2r the polynomial Πl

[
H ◦ T (r)

]
is in normal form. One also has

[
h∼
ν
◦ T (r) − h∼

ν

]
∈ R1 ,

[
ϵH0 ◦ T (r) − ϵH0

]
∈ R3 . (41)

The sets Uj , as well as the parameters ρj , the Ck norm of T (r), and the
quantity ϵr, depend on the frequency only through the parameterα. Finally
the transformed Hamiltonian contains only terms of even order (in the
sense of definition 3.6).

PROOF. The proof follows the standard proof of Birkhoff normal form
theorem. The theorem is true for r = 0. We assume it for r and prove
it for r + 1. We construct the transformation increasing by one the or-
der of the non normalized part of the Hamiltonian as the Lie transform

NORMAL FORM AND ENERGY CONSERVATION ...                            163

generated by a function χr+1 ∈ P2(r+1). First remark that, according to
(38), (39) the transformed Hamiltonian is automatically in normal form
at order 2r. We are going to choose χr+1 in such a way that

Π2(r+1)

[
H ◦ T (r) ◦ ϕχr+1

]
≡ {χr+1;hν}+Π2(r+1)

[
H ◦ T (r)

]

is in normal form too. To this end write

Π2(r+1)

[
H ◦ T (r)

]
=

∑
a,l,m

Pa,l,m(P,Q)
√
ϵ
a+2

ξlηm ,

where the indexes fulfill the limitations a + |l| + |m| = 2(r + 1) and
a ≥ |l|+ |m|, so that, in particular |l|+ |m| ≤ r + 1 ≤ N . Define now

χr+1 :=
∑

(l,m)∈NR, a

Pa,l,m(P,Q)

iν · (l −m)

√
ϵ
a+2

ξlηm (42)

where the nonresonant set NR is defined by

NR := {(l,m) : |ν · (l −m)| > α} . (43)

Then, the Ck norm of χr+1 is controlled by the Ck norm ofΠ2(r+1)[H ◦
T (r)] divided by α, and therefore the statement on the Ck norm of the
transformation holds. The statement on the domain of definition of the
transformation follows from Ur+2 ⊂ ϕχr+1(Ur+1) ⊂ Ur which is conse-
quence of Lemma 3.14. The same is true for (41) (which at leading order
follows directly from Lemma 3.7) and the statement on the dependence
of the parameters on the frequency.

END OF THE PROOF OF THEOREM 3.1. Consider T (N) and denote the
new variables by (P ′, Q′, ξ′, η′), namely (P,Q, ξ, η) = T (N)(P ′, Q′,

ξ′, η′) and by h′∼
ν
:=

∑ ∼
νj ξ

′
jη

′
j . Compute

|hν(t)− hν(0)| ≤
���hν(t)− h∼

ν
(t)

���+
���h∼

ν
(t)− h′∼

ν
(t)

��� (44)

+
���h′∼

ν
(t)−h′∼

ν
(0)

���+
���h′∼

ν
(0)−h∼

ν
(0)

���+
���h∼

ν
(0)−hν(0)

��� .
(45)
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Assume for a while that ∥(ξ′(t), η′(t))∥ ≤ 2ρE
√
ϵ for |t| ≤ ϵ−N , then

from Lemma 3.15 ∥(ξ(t), η(t))∥ ≤ 3ρE
√
ϵ and one can use (30) and (41)

to estimate the different terms of (44) and (45) by

4ρ2Eϵ
α

N
+ Cϵ2 +

���
{
h∼
ν
, H ◦ T (N)

}��� |t|+ Cϵ2 + 9ρ2Eϵ
α

N
. (46)

Indeed from h∼
ν
−h′∼

ν
∈ R1 it follows immediately |h∼

ν
(t)−h′∼

ν
(t)| < Cϵ2.

On the other hand, one has to recall that hν is the norm (see (26)) and
that h∼

ν
is close to hν because of (30)

���hν − h∼
ν

��� ≤
(
sup

j=1,...,n
|νj−

∼
νj |

)∑
j

(
|ξj |2 + |ηj |2

)
≤ α

N
∥(ξ, η)∥2 .

Now, sinceH ◦T (N) is in normal form, one has
{
h∼
ν
, H ◦ T (N)

}
∈

R2N+1 which in turn implies
���
{
h∼
ν
, H ◦ T (N)

}��� ≤ CϵN+2 and there-

fore, for the considered times the third term is smaller than Cϵ2.
Take now ϵ so small that the sum of the second, the third and the

fourth term of (44),(45) does not exceedαρ2Eϵ/N , then going back to the
original variables and recalling that, from (33), α ≤ Nb/21 the estimate
(23) follows.

We still have to prove that for |t| ≤ ϵ−N all the variables are in the
domain of validity of the normal form. Concerning the fast variables this
is a consequence of an argument similar to that of Lyapunov’s theorem
which gives

h′∼
ν
(t) ≤ h′∼

ν
(0) +

���h′∼
ν
(t)− h′∼

ν
(0)

��� ≤ ρ2Eϵ(1 + α) + Cϵ2 ≤ 2ρ2Eϵ .

Concerning the variables (P ′, Q′) we exploit the conservation of the
Hamiltonian. To this end denote ĥ(P,Q) := H0(P,Q, 0) and HP :=
H0 − ĥ, and remark that |HP | < Cϵ, so that one has (in the (P,Q)
variables)

ĥ(t) = ĥ(0) + hω(0)− hω(t) +HP (0)−HP (t)
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so that, recalling the second of (33), one has

ĥ(t) ≤ E∗
0 + Eb+ Cϵ <

3

2
E∗

0 ,

provided b and ϵ are small enough. It follows that ĥ′(t) ≤ 2E∗
0 on the

considered time scale. The result then holds in the rescaled time. To get
the result in the physical time, just repeat the whole argument withN+1
in place of N .
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