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SUNTO. Questa nota riguarda un sistema non standard di equazioni differenziali che
descrive la segregazione di fase di due specie. Il sistema nasce in modo naturale
nell'analisi asintotica, elaborata di recente da Colli, Gilardi, Krejčí e Sprekels, al ten-
dere a zero del coefficiente di diffusione nell'equazione che governa l'evoluzione del
parametro d'ordine. In particolare viene fornito un risultato di buona positura per il
sistema limite. Questa nota tratta lo stesso problema limite in un quadro meno generale
ma ancora decisamente significativo e fornisce una dimostrazione molto semplice della
regolarità della soluzione. Come sottoprodotto viene data una dimostrazione altrettanto
semplice dell'unicità.
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ABSTRACT. A nonstandard system of differential equations describing two-species phase
segregation is considered. This system naturally arises in the asymptotic analysis recently
done by Colli, Gilardi, Krejčí, and Sprekels as the diffusion coefficient in the equation
governing the evolution of the order parameter tends to zero. In particular, a well-
posedness result is proved for the limit system. This paper deals with the above limit
problem in a less general but still very significant framework and provides a very simple
proof of further regularity for the solution. As a byproduct, a simple uniqueness proof
is given as well.
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1. INTRODUCTION

In this paper, we consider the system

(
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ−∆µ = 0 (1)

∂tρ+ f ′(ρ) = µ g′(ρ) (2)

∂νµ|Γ = 0 (3)

µ(0) = µ0 and ρ(0) = ρ0 (4)

in the unknown fields µ and ρ, where the equations (1)–(2) are meant
to hold in a bounded domain Ω ⊂ R3 with a smooth boundary Γ and
in some time interval (0, T ), and where ∂ν in (3) denotes the outward
normal derivative. In the recent papers [1, 2], the well-posedness of
the problem (1)–(4) was investigated, and in particular the existence of
the solution was proved by considering the system of partial differential
equations obtained by replacing the ordinary differential equation (2) by
the partial differential equation

∂tρ− σ∆ρ+ f ′(ρ) = µ g′(ρ)

with the boundary condition ∂νρ|Γ = 0
(5)

and performing the asymptotic analysis as σ tends to zero. This modified
system originates from the model introduced in [3], which describes the
phase segregation of two species (atoms and vacancies, say) on a lattice
in presence of diffusion and looks like a modification of the well-known
Cahn-Hilliard equations (see, e.g., [4, 5]). The state variables are the
order parameter ρ (volume density of one of the two species), which of
course must attain values in the domain of f ′, and the chemical poten-
tial µ, which is required to be nonnegative for physical reasons. This
system has been studied in a series of papers and a number of results has
been obtained in several directions [6, 7, 8, 9, 10, 11]. Moreover, some of
these results hold for a more general system involving a nonlinear ellip-
tic operator in divergence form in equation (1), in place of the Laplacian
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(see [1, 2, 12, 13]). In all of the quoted papers, the function f repre-
sents a double-well potential. A thermodynamically relevant example is
the so-called logarithmic potential defined (up to an additive constant)
by the formula

f(ρ) = c1
(
ρ log ρ+(1−ρ) log(1−ρ)

)
+c2 ρ(1−ρ) for ρ ∈ (0, 1), (6)

where c1 and c2 are positive constant with c2 > 2c1 in order that f
actually presents a double well. However, the class of the admissible
potentials could be much wider and includes both the standard double-
well potential defined by

f(ρ) =
1

4
(ρ2 − 1)2 for ρ ∈ R (7)

and potentials whose convex part is just proper and lower semicontinu-
ous, and thus possibly non-differentiable, in its effective domain. In the
latter case, the monotone part of f ′ is replaced by a multivalued subdif-
ferential and (5) has to be read as a differential inclusion. In [1], such a
wide class of potentials is considered, so that the existence result for sys-
tem (1)–(4) obtained there is very general. However, the solution con-
structed in this way may be irregular, in principle. Nevertheless, it is
unique and a little more regular than expected, at the price that the cor-
responding proofs are rather complicated.

The present paper deals just with potentials that see example (6)
as a prototype, but it provides simple proofs of further regularity. As an
application, we give an easy uniqueness proof.

Our paper is organized as follows. In the next section, we list our
assumptions and state problem (1)–(4) in a precise form. In the last sec-
tion, we present and prove our results.

2. ASSUMPTIONS AND NOTATIONS

We first introduce precise assumptions on the data for the mathematical
problem under investigation. We assume Ω to be a bounded connected



50 PIERLUIGI COLLI, GIANNI GILARDI, JÜRGEN SPREKELS

open set inR3 with smooth boundaryΓ (treating lower-dimensional cases
would require only minor changes) and let T ∈ (0,+∞) stand for a final
time. We set

V := H1(Ω), H := L2(Ω),

and W := {v ∈ H2(Ω) : ∂νv|Γ = 0},
(8)

and endow the spaces (8) with their standard norms, for which we use
a self-explanatory notation like ∥ · ∥V . For simplicity, we use the same
notation also for powers of these spaces. The symbol ⟨ · , · ⟩ denotes the
duality product between V ∗, the dual space of V , and V itself. Moreover,
for p ∈ [1,+∞], we write ∥ · ∥p for the usual norm both in Lp(Ω) and
in Lp(Q), where Q := Ω × (0, T ). For the nonlinearities and the initial
data we assume that there exist

ρ∗, ρ
∗ ∈ R with ρ∗ < ρ∗ (9)

in order that the combined conditions listed below hold.

f, g : [ρ∗, ρ
∗] → R are C2 functions (10)

g(r) ≥ 0 and g′′(r) ≤ 0 for every r ∈ [ρ∗, ρ
∗] (11)

f ′(ρ∗) ≤ 0 ≤ g′(ρ∗) and g′(ρ∗) ≤ 0 ≤ f ′(ρ∗). (12)

µ0 ∈ V ∩ L∞(Ω) and µ0 ≥ 0 a.e. in Ω (13)

ρ0 ∈ V and ρ∗ ≤ ρ0 ≤ ρ∗ a.e. in Ω (14)

Notice that the functions f , g, together with their first derivatives, are
bounded and Lipschitz continuous. Moreover, we remark that the dif-
ferent assumptions of [1] can be fulfilled by splitting f as f1+f2 with f1
nonnegative and convex, and suitably extending f1, f2, and g to an open
interval including [ρ∗, ρ∗]. In particular, the logarithmic potential (6) fits
the above requirements with ρ∗, ρ∗ ∈ (0, 1) and reasonable choices of g.

Now, we recall the part that follows from the asymptotic analysis
performed in [1] and is of interest for the present paper.
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THEOREM 2.1. Assume that the assumptions (9)–(14) hold. Then there
exists at least one pair (µ, ρ) satisfying

µ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ L∞(Q) and µ ≥ 0 a.e. in Q (15)

ρ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) and ρ∗ ≤ ρ ≤ ρ∗ a.e. in Q (16)

u :=
(
1 + 2g(ρ)

)
µ ∈ W 1,1(0, T ;V ∗) (17)

and solving the problem

⟨∂tu(t), v⟩+
∫

Ω

∇µ(t) · ∇v =

∫

Ω

µ(t) g′(ρ(t)) ∂tρ(t) v

for all v ∈ V and a.a. t ∈ (0, T ) (18)

∂tρ+ f ′(ρ) = µ g′(ρ) a.e. in Q (19)

u(0) =
(
1 + 2g(ρ0)

)
µ0 and ρ(0) = ρ0 a.e. in Ω. (20)

We observe that the first regularity level for the time derivative of
u obtained in [1] is ∂tu ∈ L4/3(0, T ;V ∗), that is, a little better than (17).
However, one easily sees that ∂tu ∈ L2(0, T ;V ∗) by comparison in (18),
on account of (15)–(16) and (10).

Remark 2.2. We can also consider the stronger form of (18),
∫

Ω

(
1 + 2g(ρ(t))

)
∂tµ(t) v +

∫

Ω

µ(t) g′(ρ(t)) ∂tρ(t) v

+

∫

Ω

∇µ(t) · ∇v = 0
(21)

for all v ∈ V and for a.a. t ∈ (0, T ), and observe that it is equiva-
lent to (18) provided that one can apply the Leibniz rule to the time
derivative ∂tu. This is the case if ∂tµ exists and belongs to L2(Q). How-
ever, Theorem 2.1 does not ensure such a regularity. Moreover, (18) also
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includes the homogenous Neumann boundary condition (3) in a gener-
alized sense.

The aim of this paper is to prove that any solution to problem (18)–
(20) satisfying the very mild regularity (15)–(17) is in fact much smoother
and, in particular, unique.

Now, we list a number of tools and notations used throughout the
paper. First of all, we often use the elementary Young inequality,

ab ≤ εa2 +
1

4ε
b2 for every a, b ≥ 0 and ε > 0, (22)

and repeatedly account for the Hölder and Sobolev inequalities. The
precise form of the latter we use is the following:

V ⊂ Lq(Ω) and ∥v∥q ≤ C∥v∥V for every v ∈ V and q ∈ [1, 6],

(23)
whereC depends only onΩ. Moreover, the above embedding is compact
if q < 6, and the compactness inequality

∥v∥q ≤ ε∥∇v∥2 + Cq,ε∥v∥2 for every v ∈ V , q ∈ [1, 6), and ε > 0,

(24)
holds with a constant Cq,ε depending on Ω, q, and ε, only. Furthermore,
we exploit the embeddings

L∞(0, T ;H) ∩ L2(0, T ;V ) ⊂ L∞(0, T ;H) ∩ L2(0, T ;L6(Ω))

⊂ L10/3(Q),
(25)

as well as the corresponding inequality

∥v∥L10/3(Q) ≤ C
(
∥v∥L∞(0,T ;H) + ∥v∥L2(0,T ;V )

)
, (26)

which follow from combining the Sobolev embedding V ⊂ L6(Ω) and
the well-known interpolation inequality forLp spaces. Again,C depends
only on Ω. Finally, we set

Qt := Ω× (0, t) for t ∈ (0, T ] (27)
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and use the same symbol small-case c for different constants, that may
only depend on Ω, the final time T , the nonlinearities f and g, and the
properties of the data involved in the statements at hand. A notation
like cε signals a constant that also depends on the parameter ε. The
reader should keep in mind that the meaning of c and cε may change
from line to line and even within the same chain of inequalities, whereas
those constants we need to refer to are always denoted by capital letters,
just like C in (23) and in (26).

3. REGULARITY

In this section, we prove regularity results for the solution to problem
(18)–(20) under the assumption that the conditions (9)–(14) hold (we of-
ten avoid writing this). In order to help the reader, we sketch our strat-
egy. We fix any solution (µ, ρ) to problem (18)–(20) satisfying the reg-
ularity requirements (15)–(17) and recall that all of the nonlinear terms
involving ρ are bounded. Moreover, µ is bounded, too (cf. (15)). Thus,
(19) implies that even ∂tρ is bounded. Now, we set

a := 1 + 2g(ρ) and b := µ g′(ρ) ∂tρ (28)

and notice that ∂ta = 2g′(ρ)∂tρ. Hence, we have

a ∈ L∞(0, T ;V ) ∩ L∞(Q),

∂ta ∈ L∞(Q),

b ∈ L∞(Q),

a ≥ 1 a.e. in Q.

(29)

Next, we introduce the associated linear problem

⟨∂t(az)(t), v⟩+
∫

Ω

∇z(t) · ∇v

=

∫

Ω

b(t) v for all v ∈ V and a.a. t ∈ (0, T )
(30)
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(az)(0) =
(
1 + 2g(ρ0)

)
µ0 , (31)

whose unknown z is required to satisfy

z ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and az ∈ W 1,1(0, T ;V ∗), (32)

and observe that z = µ is a solution. Then, we prove that (30)–(31)
has a unique solution z satisfying (32). This implies the following. If we
regularize (30)–(31) and perform some a priori estimates on the solution
to the regularized problem then these estimates still hold for any weak
limit. On the other hand, such a limit must be µ due to uniqueness. This
entails further regularity forµ. Once the regularity obtained forµ is suffi-
ciently high, we can even prove uniqueness in a simple way. We observe
that uniqueness for (30)–(31) is not straightforward. Indeed, (30) is a
very weak form (due to the very low regularity (32)) of the homogeneous
Neumann boundary value problem for the equation

∂t(az)−∆z = b ,

which is formally uniformly parabolic. However, the equation is not pre-
sented in divergence form, and a might be discontinuous since no con-
tinuity for ρ is known. At this point, we can start with our program.

LEMMA 3.1. Let (µ, ρ) be a solution to (18)–(20) satisfying (15)–(17),
and let a and b be defined by (28). Then problem (30)–(31) has a unique
solution z satisfying (32), and this solution coincides with µ.

PROOF. Clearly, µ satisfies (32) and solves (30)–(31). As far as unique-
ness is concerned, we can deal with the correponding homogeneous
problem, by linearity. Thus, we fix any z satisfying (32) that solves (30)–
(31), where b is replaced by zero on the right-hand side of (30) and the
initial value in (31) is zero. Then, we introduce the adjoint problem of
finding v such that
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v ∈ H1(0, T ;H) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ) (33)

−a ∂tv −∆v = z a.e. in Q and v(T ) = 0. (34)

It is easily seen that (33)–(34) has a (unique) solution since z ∈
L2(0, T ;H). We use such a solution v as a test function for z, observing
that the integration by parts formula

T∫

0

⟨∂tw(t), ϕ(t)⟩ dt = ⟨w(T ), ϕ(T )⟩−⟨w(0), ϕ(0)⟩−
T∫

0

⟨∂tϕ(t), w(t)⟩ dt

is actually valid if w ∈ L2(0, T ;V ) ∩ W 1,1(0, T ;V ∗) and ϕ ∈
C0([0, T ];V )∩H1(0, T ;V ∗). Thus, the choice ϕ = v is allowed by (33),
Hence, we have

0 =

T∫

0

⟨∂t(az)(t), v(t)⟩ dt+
∫

Q

∇z · ∇v

= ⟨(az)(T ), v(T )⟩ − ⟨(az)(0), v(0)⟩ −
T∫

0

⟨∂tv(t), (az)(t)⟩ dt

−
∫

Q

z∆v

=

∫

Q

(
−a ∂tv −∆v

)
z =

∫

Q

z2 ,

which implies that z = 0.

COROLLARY 3.2. If z ∈ H1(0, T ;H)∩L∞(0, T ;V )∩L2(0, T ;W ) solves

a ∂tz + ∂ta z −∆z = b a.e. in Q and z(0) = µ0, (35)

then it holds z = µ.

PROOF. Indeed, our assumptions on z and (35) imply both (32) and
(30)–(31). Thus, the previous lemma gives the result.



REGULARITY FOR A NONSTANDARD PHASE FIELD SYSTEM                      55

v ∈ H1(0, T ;H) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ) (33)

−a ∂tv −∆v = z a.e. in Q and v(T ) = 0. (34)

It is easily seen that (33)–(34) has a (unique) solution since z ∈
L2(0, T ;H). We use such a solution v as a test function for z, observing
that the integration by parts formula

T∫

0

⟨∂tw(t), ϕ(t)⟩ dt = ⟨w(T ), ϕ(T )⟩−⟨w(0), ϕ(0)⟩−
T∫

0

⟨∂tϕ(t), w(t)⟩ dt

is actually valid if w ∈ L2(0, T ;V ) ∩ W 1,1(0, T ;V ∗) and ϕ ∈
C0([0, T ];V )∩H1(0, T ;V ∗). Thus, the choice ϕ = v is allowed by (33),
Hence, we have

0 =

T∫

0

⟨∂t(az)(t), v(t)⟩ dt+
∫

Q

∇z · ∇v

= ⟨(az)(T ), v(T )⟩ − ⟨(az)(0), v(0)⟩ −
T∫

0

⟨∂tv(t), (az)(t)⟩ dt

−
∫

Q

z∆v

=

∫

Q

(
−a ∂tv −∆v

)
z =

∫

Q

z2 ,

which implies that z = 0.

COROLLARY 3.2. If z ∈ H1(0, T ;H)∩L∞(0, T ;V )∩L2(0, T ;W ) solves

a ∂tz + ∂ta z −∆z = b a.e. in Q and z(0) = µ0, (35)

then it holds z = µ.

PROOF. Indeed, our assumptions on z and (35) imply both (32) and
(30)–(31). Thus, the previous lemma gives the result.



56 PIERLUIGI COLLI, GIANNI GILARDI, JÜRGEN SPREKELS

THEOREM 3.3. Assume that the assumptions (9)–(14) are fulfilled, and let
(µ, ρ) be a solution to (18)–(20) satisfying (15)–(17). Then µ also satisfies

µ ∈ H1(0, T ;H) ∩ L2(0, T ;W ). (36)

In particular, µ ∈ C0([0, T ];V ).

PROOF. Thanks to (29), there exist two sequences {an} and {bn} of
C1 functions such that

an → a, ∂tan → ∂ta, bn → b strongly in L2(Q) (37)

|an|+ |∂tan|+ |bn| ≤ c and an ≥ 1 a.e. in Q (38)

Then, we consider for any n ∈ N the following regularization of prob-
lem (35):

an∂tzn + ∂tan zn −∆zn = bn a.e. in Q and zn(0) = µ0 , (39)

complemented with the homogeneous Neumann boundary condition.
Due to the regularity of the coefficients and assumption (13) on µ0, it is
easy to see that this problem has a (unique) solution zn satisfying

zn ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (40)

We add zn to both sides of the equation for convenience. Then, we
multiply the resulting equality by ∂tzn and integrate over Qt for any t ∈
(0, T ). Owing to (38), we easily obtain that
∫

Qt

|∂tzn|2 +
1

2
∥zn(t)∥2V ≤ 1

2

∫

Ω

|∇µ0|2 +
∫

Qt

(
bn + zn − ∂tan zn)∂tzn

≤ 1

2

∫

Ω

|∇µ0|2+
1

2

∫

Qt

|∂tzn|2+c

∫

Qt

(1+|zn|2)

≤ c+
1

2

∫

Qt

|∂tzn|2 + c

t∫

0

∥zn(s)∥2V ds.
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By rearranging and applying the Gronwall lemma, we immediately con-
clude that

∥∂tzn∥L2(0,T ;H) + ∥zn∥L∞(0,T ;V ) ≤ c.

Moreover, by comparison in (39), we also find an estimate for ∥∆zn∥H .
So, the above bounds and standard regularity results for elliptic equa-
tions yield the estimate

∥zn∥H1(0,T ;H) + ∥zn∥L∞(0,T ;V ) + ∥zn∥L2(0,T ;W ) ≤ c. (41)

Therefore, by weak compactness, there exists some z such that

zn → z weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),

at least for a subsequence. This also implies zn → z weakly in C0([0, T ];
H) and, recalling (37), we infer that

a ∂tz + ∂ta z −∆z = b and z(0) = µ0 .

Now, we apply Corollary 3.2 and conclude that z = µ, whence (36) fol-
lows. The last assertion is a consequence of the well-known embedding
H1(0, T ;H) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ).

The regularity just established can be improved provided that a
stronger assumption on the initial datum µ0 is satisfied, namely

µ0 ∈ W. (42)

We observe that the regularity given in (42) implies (13) because of the
continuous embeddingW ⊂ C0(Ω). The new regularity result is stated
in the following theorem, whose proof is performed with the same tech-
nique as before.

THEOREM 3.4. In addition to (9)–(14), assume that (42) holds, and let
(µ, ρ) be a solution to (18)–(20) satisfying (15)–(17). Then µ also satisfies

∂tµ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and µ ∈ L∞(0, T ;W ). (43)

PROOF. Theorem 3.3 ensures that (36) holds for µ, so that the regu-
larity of ∂tρ, a, and b can be updated. Indeed, (36) implies that (19) can
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be differentiated with respect to time and that ∂2
t ρ ∈ L2(Q). Hence, we

also have
∂2
t a ∈ L2(Q) and ∂tb ∈ L2(Q), (44)

which allows us to construct a new approximation of problem (35).
Namely, we can choose sequences {an} and {bn} of C2 functions sat-
isfying (37)–(38) and

∥∂2
t an∥L2(Q) + ∥∂tbn∥L2(Q) ≤ c for every n. (45)

This leads to a sequence of solutions zn to the corresponding problems
(39), which, however, still keeps all of the properties of the approxima-
tion we had established in the proof of the previous theorem. But the
regularity of the coefficient and the assumption (42) on µ0 also ensure
us that zn is smoother and that equation (39) can be differentiated with
respect to time. By doing this, we get

an ∂
2
t zn + 2∂tan ∂tzn + ∂2

t an zn −∆∂tzn = ∂tbn ,

and we can multiply this equality by ∂tzn and integrate over Qt, where
t ∈ (0, T ) is arbitrary. By integrating by parts with respect to time the
term involving the second derivative ∂2

t zn, and owing to the inequality
an ≥ 1, we obtain

1

2

∫

Ω

|∂tzn(t)|2 +
∫

Qt

|∇∂tzn|2

≤ 1

2

∫

Ω

an(0)|∂tzn(0)|2 −
5

2

∫

Qt

∂tan |∂tzn|2

−
∫

Qt

∂2
t an zn ∂tzn +

∫

Qt

∂tbn ∂tzn .

Two of the terms on the right-hand side can be dealt with, by accounting
for (38), (41) and (45), in the following way:
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−5

2

∫

Qt

∂tan |∂tzn|2 +
∫

Qt

∂tbn ∂tzn ≤ c+ c

∫

Qt

|∂tzn|2 ≤ c.

For the first one, we observe that (39), (42), and (38) imply that an(0) ≤ c
and

|∂tzn(0)| ≤ |bn(0) + ∆zn(0)− ∂tan(0) zn(0)|
≤ c+ |∆µ0|+ c µ0 ≤ c+ |∆µ0|.

As µ0 ∈ W , the integral under investigation is bounded. It remains to
handle the third term. By using first the Hölder and Young inequalities,
and then the Sobolev and compactness inequalities (23) and (24) with
q = 4, we have

−
∫

Qt

∂2
t an zn ∂tzn ≤

t∫

0

∥∂2
t an(s)∥2 ∥zn(s)∥4 ∥∂tzn(s)∥4 ds

≤
t∫

0

∥∂tzn(s)∥24 +
t∫

0

∥∂2
t an(s)∥22 ∥zn(s)∥24 ds,

whence

−
∫

Qt

∂2
t an zn ∂tzn ≤ 1

2

t∫

0

∥∇∂tzn(s)∥2H ds+ c

t∫

0

∥∂tzn(s)∥2H ds

+c

t∫

0

∥∂2
t an(s)∥22 ∥zn(s)∥2V ds

≤ 1

2

t∫

0

∥∇∂tzn(s)∥2H ds+ c ,

where the last inequality follows from (41) and (45). By collecting all this
and (46) and rearranging, we conclude that

∥∂tzn∥L∞(0,T ;H) + ∥∂tzn∥L2(0,T ;V ) ≤ c. (46)
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Moreover, by comparison in (39), we also infer that {∆zn} is bounded
in L∞(0, T ;H). Elliptic regularity and (41) then yield the boundedness
of {zn} in L∞(0, T ;W ). At this point, we use weak compactness once
more. We obtain, on a subsequence, that

zn → z weakly star inW 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

and conclude that z = µ as before. Hence, (36) holds, and the proof is
complete.

COROLLARY 3.5. Under the assumptions of Theorem 3.4, every solution
(µ, ρ) to problem (18)–(20) also satisfies

∂tµ ∈ L10/3(Q). (47)

PROOF. It suffices to combine the first of (43) and (25).

The regularity just achieved allows us to give a rather simple unique-
ness proof.

THEOREM 3.6. Assume that (9)–(14) and (42) hold. Then the solution
(µ, ρ) given by Theorem 2.1 is unique.

PROOF. We adapt the argument used in [7] to the present situation.
We pick two solutions (µi, ρi), i = 1, 2, and set for convenience

ρ := ρ1 − ρ2 ,

µ := µ1 − µ2 ,

γi := g(ρi) ,

γ := γ1 − γ2 ,

ηi := g′(ρi) ,

η := η1 − η2 .

By accounting for Remark 2.2, we write (21) for both solutions, take the
difference, and multiply by µ. At the same time, we write (19) for both
solutions, add ρi to both sides for convenience, move all the nonlinear
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terms to the right-hand side, and multiply the difference by ∂tρ. Then,
we integrate and sum up. By owing to the identity

{(1 + 2γ1)∂tµ1 + µ1η1∂tρ1 − (1 + 2γ2)∂tµ2 + µ2η2∂tρ2}µ
=

1

2
∂t{(1 + 2γ1)|µ|2}+ 2γ∂tµ2 µ+ µ2η∂tρ1 µ+ µ2η2∂tρµ ,

and using the boundedness and the Lipschitz continuity of the nonlin-
earities, we obtain

1

2

∫

Ω

|µ(t)|2 +
∫

Qt

|∇µ|2 +
∫

Qt

|∂tρ|2 +
1

2

∫

Ω

|ρ(t)|2

≤ c

∫

Qt

|∂tµ2| |ρ| |µ|+ c

∫

Qt

(
|ρ| |µ|+ |∂tρ| |µ|+ |∂tρ| |ρ|

)
.

Just the first integral on the right-hand side needs some treatement. By
the Hölder inequality, the compactness inequality (24) with q = 5, and
the elementary Young inequality, we have for any ε > 0

∫

Qt

|∂tµ2| |ρ| |µ| ≤
t∫

0

∥∂tµ2(s)∥10/3 ∥ρ(s)∥2 ∥µ(s)∥5 ds

≤
t∫

0

∥µ(s)∥25 ds+
t∫

0

∥∂tµ2(s)∥210/3 ∥ρ(s)∥
2
2 ds

≤ ε

t∫

0

∥∇µ(s)∥22 ds+ cε

t∫

0

∥µ(s)∥22 ds

+

t∫

0

∥∂tµ2(s)∥210/3 ∥ρ(s)∥
2
2 ds.

As the function s �→ ∥∂tµ2(s)∥210/3 belongs to L5/3(0, T ) by Corol-
lary 3.5, and thus to L1(0, T ), the last integral can be controlled by
the left-hand side of (48) via Gronwall-Bellman's lemma (see, e.g., [14,
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Lemma A.4, p. 156]). Hence, it is sufficient to choose ε small enough
and apply this lemma in order to conclude that µ = 0 and ρ = 0.

Remark 3.7. It is clear that the bootstrap procedure used in the above
proofs can be continued to provide even more regularity for the solu-
tion (µ, ρ) to problem (18)–(20) under suitable assumptions on the initial
data.
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