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SUNTO. Si mostra che un sistema Hamiltoniano nell'intorno di un punto di equilibrio,
sotto condizione che gli autovalori soddisfino delle condizioni di non–risonanza del
tipo di Melnikov, ammette una forma normale che rende evidente l'esistenza di una
varietà invariante (locale) a due dimensioni sulla quale si hanno soluzioni note. Nel
caso di un autovalore puramente immaginario tali soluzioni formano una famiglia pe-
riodica a due parametri che costituisce la continuazione naturale di un modo normale.
Questo secondo risultato è stato dimostrato in precedenza da Lyapounov. In questo la-
voro si completa quello di Lyapounov dimostrando la convergenza della trasformazione
dell'Hamiltoniana a forma normale e rimuovendo le restrizione che gli autovalori siano
puramente immaginari.
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ABSTRACT. It is shown that a Hamiltonian system in the neighbourhood of an equilib-
rium may be given a special normal form in case the eigenvalues of the linearized system
satisfy non–resonance conditions of Melnikov's type. The normal form possesses a two
dimensional (local) invariant manifold on which the solutions are known. If the eigen-
value is pure imaginary then these solutions are the natural continuation of a normal
mode of the linear system. The latter result was first proved by Lyapounov. The present
paper completes Lyapounov's result in that the convergence of the transformation of the
Hamiltonian to a normal form is proven and the condition that the eigenvalues be pure
imaginary is removed.
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1. INTRODUCTION

Consider a canonical system of differential equations in a neighbourhood
of an equilibrium, with Hamiltonian

H(x, y) = H0(x, y) +H1(x, y) + . . . , (x, y) ∈ C2n, (1)

where the unperturbed quadratic part of the Hamiltonian is

H0(x, y) =
n∑
j=1

λjxjyj , (λ1, . . . , λn) ∈ Cn, (2)

andHs(x, y) for s ≥ 1 is a homogeneous polynomial of degree s+2. The
form (2) is a typical one for the quadratic part of a Hamiltonian system
in the neighbourhood of an equilibrium, as under quite general condi-
tions the system may be given that form via a (complex) linear canonical
transformation (see, e.g., [10] or [12], § 15).

The Hamiltonian is assumed to be analytic in some neighborhood
of the origin of C2n. Moreover λ1 will be assumed to satisfy at least the
first of the following non–resonance conditions:

(i) First Melnikov's condition:

λν − kλ1 ̸= 0 for k ∈ Z and ν = 2, . . . , n . (3)

(ii) Second Melnikov's condition:

λν ± λν′ − kλ1 ̸= 0 for k ∈ Z and ν, ν ′ = 2, . . . , n , (4)

the case ν ′ = ν being included.

In [10] Lyapounov proved that if λ1 = iω1 is pure imaginary and the
non resonance condition (i) above is satisfied then there exists a two pa-
rameter family of solutions of the form
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xj = φj(ξ1, η1), yj = ψj(ξ1, η1) (5)

written as convergent power series in the arguments

ξ1 =
◦
ξ1e

ita1(
◦
ζ), η1 =

◦
η1e

−ita1(
◦
ζ), (6)

where a1(
◦
ζ) = λ1 + . . . is a convergent power series in

◦
ζ1 =

◦
ξ1

◦
η1. In

the case n = 1 this actually describes all solutions of the system. A proof
in case all λ's are pure imaginary is reported in [12].

The proof of the theorem is worked out by the authors quoted
above by expanding the solution in the form (5) and proceeding by com-
parison of coefficients. From a formal viewpoint the statement above
looks equivalent to the existence of a canonical transformation that gives
the system (1) a suitable normal form, making theHamiltonian to depend
at least quadratically on x2, . . . , xn, y2, . . . , yn . A formal construction
giving such a normal form can be easily produced. However, proving
the convergence of the normalization procedure seems to be more diffi-
cult. The aim of this paper is precisely to produce a proof of convergence
of the transformation to normal form.

I will actually give two different statements that can be proved with
the same method. The first one is

THEOREM 1.1. With the nonresonance hypothesis (i) above (first Mel-
nikov's condition) on λ1, . . . , λn, there exists a canonical, near the identity
transformation in the form of a power series convergent in a neighbourhood
of the origin, which gives the Hamiltonian (1) the normal form

H(x, y) = H0(x, y) + Γ(x1y1) + F (x, y), (7)

where H0(x, y) as in (1), Γ(x1y1) depends only on the product x1y1, and
F (x, y) is at least quadratic in x2, . . . , xn, y2, . . . , yn

The existence of the Lyapounov orbits for λ1 pure imaginary is ev-
ident from the normal form: just put initially x2 = . . . = xn = y2 =
. . . = yn = 0, which defines a local invariant two dimensional mani-
fold on which the dynamics is generated by the Hamiltonian λ1x1y1 +
Γ(x1y1). The advantage of the normal form is that it allows also to



136 ANTONIO GIORGILLI

investigate the dynamics in the neighbourhood of the orbits so found.
To this end the following statement may be even more useful.

THEOREM 1.2. With the nonresonance hypotheses (i) and (ii) above (first
and second Melnikov's conditions) on λ1, . . . , λn, there exists a canonical,
near the identity transformation in the form of a power series convergent in
a neighbourhood of the origin, which gives the Hamiltonian (1) the normal
form

H(x, y) = H0(x, y) + Γ(x1y1, . . . , xnyn) + F (x, y), (8)

whereH0(x, y) as in (1), Γ(x, y) contains only monomials xj1y
j
1xνyν with

a positive integer j and with ν = 2, . . . , n, and F (x, y) is at least cubic in
x2, . . . , xn, y2, . . . , yn

This requires a stronger non–resonance condition. However this
normal form may be more convenient if one is interested in the sta-
bility of a Lyapounov orbit. Indeed, let all λ's be pure imaginary, say
λj = iωj , and write the Hamiltonian restricted to the invariant manifold
x2 = . . . = xn = y2 = . . . = yn = 0 in action–angle variables by trans-
forming x1 =

√
p eiq , y1 = −i√p e−iq. Thus one gets the Hamiltonian

ω1p+ Γ(p), which represents a non linear oscillator, with orbits written
as p(t) = p∗ , q(t) = q(0) + Ω(p∗)t, where Ω(p∗) = ω1 + O(p∗) is a
fixed frequency. By a translation p′ = p − p∗ the Hamiltonian may be
reexpanded (omitting primes) as

H(q, p, x, y) = Ωp+

n∑
j=2

λjxjyj +H1 +H2 + . . .

whereHs is a homogeneous polynomial of degree s+2 in p1/2, x2, . . . , yn
with coefficients periodically depending on q. The dynamics of the latter
Hamiltonian may be investigated with known methods from perturba-
tion theory. The advantage with respect to the normal form of theo-
rem 1.1 is that the quadratic part of the Hamiltonian is independent of
the angle q.

The proof is based on a previous work by the author [5] concerning
the construction of the normal form in a case investigated by Cherry [2]
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and Moser [11]. It must be stressed that this problem does not involve
small divisors. Rather, the possible source of divergence is due to the use
of Cauchy's estimates for the derivatives required by the normalization
algorithm. The global effect of accumulation of derivatives is controlled
with a technique introduced by the author and U. Locatelli in order to
achieve a proof of KAM theorem using classical expansions in a pertur-
bation parameter (see [6, 7, 4, 8]).

2. FORMAL ALGORITHM

Reducing the Hamiltonian to a normal form is a quite general problem
which may be solved in a number of different ways. Moreover, the con-
cept of “normal form” may assume a quite general meaning, depending
on what one is looking for. Here I state the algorithm in a general form,
using the method of composition of Lie series.

2.1 The algorithm for the normal form

Write the Hamiltonian after r normalization steps as

H(r)(x, y) = H0(x, y)+Z1(x, y)+ . . .+Zr(x, y)+
∑
s>r

H(r)
s (x, y), (9)

where Z1(x, y), . . . , Zr(x, y) are in normal form, whatever it means, and
are homogeneous polynomials of degree 3, . . . , r + 2. For r = 0 the
Hamiltonian (1) is already in the wanted form, with no functions Z.

Assume that the Hamiltonian has been given a normal form (9) up
to order r− 1, so thatH(r−1) is known. The generating function χr and
the normal form Zr are determined by solving the equation

LH0χr + Zr = H(r−1)
r . (10)

where the common notation Lφ· := {·, φ} has been used. The solution
of this equation depends onwhat is meant by “normal form”. At a formal
level, any choice thatallows to solve the equation above for Zr and χr is
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acceptable. Assume for a moment that a method of solution has been
found. Then the transformed Hamiltonian is expanded as

H
(r)
sr+m =

1

s!
Lsχr

Zm +

s−1∑
p=0

1

p!
Lpχr

H
(r−1)
(s−p)r+m

for r ≥ 2 , s ≥ 1 and 1 ≤ m < r,

H(r)
sr =

1

(s− 1)!
Ls−1
χr

(
1

s
Zr +

s− 1

s
H(r−1)
r

)
+

s−2∑
p=0

1

p!
Lpχr

H
(r−1)
(s−p)r

for r ≥ 1 and s ≥ 2.
(11)

The justification of the algorithm requires only some straightforward cal-
culation, and is deferred to appendix A.

Thus, the problem is how to solve the equation (10) for the gener-
ating function χr and the normal form Zr. Let me make some general
considerations.

Let Ps denote the linear space of homogeneous polynomials of de-
gree s in the complex variables x, y. Let also P =

∪
s≥0 Ps, so that a

formal power series is an element of P . A basis in P is given by the
monomials xjyk := xj11 · . . . · xjnn yk11 · . . . · yknn , where j, k are integer
vectors with non–negative components. The linear operator LH0 maps
every space Ps into itself. If, due to the choice of the coordinates, the
unperturbed Hamiltonian H0 has the form (2) then the operator LH0 is
diagonal, since

LH0x
jyk = ⟨j − k, λ⟩xjyk.

The kernel and the range of LH0 are defined as usual, namely N =

L−1
H0

(0), the inverse image of the null vector in P , and R = LH0(P).
Both N and R are actually subspaces of the same space P , and it turns
out that they are complementary subspaces, i.e., N ∩R = {0}, the null
vector, and N ⊕ R = P . A consequence of the properties above is
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that LH0 restricted to the subspaceR is uniquely inverted, i.e., the equa-
tion LH0χ = ψ with ψ ∈ R admits an unique solution χ satisfying the
conditionχ ∈ R. That unique solution will be written asχ = L−1

H0
ψ, i.e.,

L−1
H0
is defined as the inverse of LH0 restricted toR. It's easy to identify

the subspaces N and R using the coordinates. Thanks to the diagonal
form of LH0 one has

N = span
{
xjyk : ⟨j − k, λ⟩ = 0

}
,

R = span
{
xjyk : ⟨j − k, λ⟩ ̸= 0

}
.

(12)

Given ψ ∈ R and writing ψ =
∑

j,k ψj,kx
jyk, with ψj,k = 0 for xjyk ∈

N , one has
L−1
H0
ψ =

∑
j,k

ψj,k
⟨j − k, λ⟩

xjyk. (13)

In view of the general considerations above we can conclude that
the choice of a normal form is subjected to the constraint that in equa-
tion (10) we have H(r−1)

r − Zr ∈ R. The simplest choice is to ask also
Zr ∈ N , i.e., to set Zr to be the projection of H(r−1)

r on the subspace
N . This is known indeed as Birkhoff's normal form.

2.2 Normal form for Lyapounov's orbits

I come now to show that the construction of the normal form of theo-
rem 1.1 is formally consistent. Consider the disjoint subsets of Zn

K♯ = {k ∈ Zn : k2 = . . . = kn = 0} ,
K♮ = {k ∈ Zn : |k2|+ . . .+ |kn| = 1} ,
K♭ = {k ∈ Zn : |k2|+ . . .+ |kn| > 1} .

(14)
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One has Zn = K♯∪K♮∪K♭, of course. Considering only integer vectors
j, k with non–negative components, introduce the subspaces of P

P♯ = span
{
xjyk : j + k ∈ K♯

}
P♮ = span

{
xjyk : j + k ∈ K♮

}
P♭ = span

{
xjyk : j + k ∈ K♭

} (15)

These subspaces are clearly disjoint, and moreover one has P = P♯ ⊕
P♮ ⊕ P♭. Finally, let N ♯ = N ∩ P♯ and R♯ = R ∩ P♯, and define the
subspaces Z andW of P as

Z = N ♯ ⊕ P♭, W = R♯ ⊕ P♮. (16)

It is an easy matter to check that Z ∩W = {0} and Z ⊕W = P . The
construction of bases for Z andW is quite straightforward: a monomial
xjyk belongs to Z in either case (j + k ∈ K♯ and ⟨j − k, λ⟩ = 0) or (j +
k ∈ K♭); else it belongs toW . The hypothesis (i) on λ (first Melnikov's
condition) formulated at the beginning of the introduction means that
the non-resonance condition

⟨k, λ⟩ ̸= 0 for 0 ̸= k ∈ K♯ ∪ K♮ (17)

is satisfied. This implies W ⊂ R, so that for every ψ ∈ W the unique
solution χ = L−1

H0
ψ, χ ∈ W of the equation LH0χ = ψ exists. With this

setting, the equation
LH0χ+ Z = Ψ, (18)

with Ψ known, admits a straightforward solution. Split Ψ = ΨZ +ΨW
with ΨZ ∈ Z and ΨW ∈ W ; such a decomposition exists and is unique,
becauseZ andW are complementary subspaces. Then setZ = ΨZ , and
determine χ = L−1

H0
ΨW according to (13).
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2.3 Adding the second Melnikov's condition

With minor changes one can also prove that the normal form of theo-
rem 1.2 can be constructed. Let

K♯ = {k ∈ Zn : k2 = . . . = kn = 0} ,
K♮ = {k ∈ Zn : |k2|+ . . .+ |kn| = 1, 2} ,
K♭ = {k ∈ Zn : |k2|+ . . .+ |kn| > 2} .

(19)

One has again Zn = K♯ ∪ K♮ ∪ K♭, of course. The subspaces of P are
defined again as in (15), although they turn out to be different in view of
the differences in the sets K. Finally, let N ♯ = N ∩ P♯, R♯ = R ∩ P♯,
N ♮ = N ∩P♮ andR♮ = R∩P♮, and define the subspaces Z andW of
P as

Z = N ♯ ⊕N ♮ ⊕ P♭, W = R♯ ⊕R♮. (20)

The difference with respect to the previous case is just that now N ♮ is
not empty, because it contains all monomials of the form (x1y1)

j ×xνyν
with ν = 2, . . . , n and positive j. This forces the change in the definition
of the subspaces Z andW . However, the properties Z ∩W = {0} and
Z⊕W = P remain true. Furthermore, in view of the secondMelnikov's
condition, also the propertyW ⊂ R holds true, so that for every ψ ∈ W
the unique solutionχ = L−1

H0
ψ, χ ∈ W of the equationLH0χ = ψ exists.

3. QUANTITATIVE ESTIMATES

Pick a real vector R ∈ Rn with positive components. and consider the
domain

∆R = {(x, y) ∈ Cn : |xj | ≤ Rj , |yj | ≤ Rj , 1 ≤ j ≤ n} , (21)

namely a polydisk which is the product of disks of radii R1, . . . , Rn in
the planes of the complex coordinates (x1, . . . , xn) and (y1, . . . , yn), re-
spectively. Let also

Λ = min
1≤j≤n

Rj . (22)
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The norm ∥f∥R in the polydisk ∆R is defined as

∥f∥R =
∑

|j+k|=r

|fj,k|Rj+k. (23)

A family of polydisks∆δR of radii δR, with 0 < δ ≤ 1will be considered
below. With a minor abuse the simplified notation ∥·∥δ in place of ∥·∥δR
will be used.

The main result of this section is

LEMMA 3.1. Let the HamiltonianH(0) satisfy ∥H(0)
s ∥1 ≤ hs−1E for s ≥

1, with some constants h ≥ 0 and E > 0. Let 0 < d < 1/2. Then
there exist positive constants β and G depending on E, h, Λ, d and on
λ1, . . . , λn such that

∥χr∥1−d ≤ βr−1G for all r ≥ 1.

The rest of this section is devoted to the proof. Some technical calcula-
tions are deferred to appendix B.

3.1 An arithmetic lemma

The following lemma will play a crucial role in the proof of lemma 3.1.

LEMMA 3.2. Let λ ∈ Cn be such that λ1 satisfies the non-resonance con-
dition (3). Then there exists a positive γ such that the inequality

|⟨k, λ⟩| ≥ |k|γ

holds true for all non–zero k ∈ K♯ ∪ K♮ defined as in (14).

COROLLARY 3.3. Let in addition the non-resonance condition (4) be sat-
isfied. Then the same statement holds true for all non–zero k ∈ K♯ ∪ K♮

defined as in (19).

The proof of the corollary is just a trivial modification of the
PROOF of LEMMA 3.2. For k ∈ K♯ the claim is obvious, since |⟨k, λ⟩| =
|k1λ1|. So, let k ∈ K♮. Set ϑ = max

(
|λ2|, . . . , |λn|

)
(for the corollary
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maximize also over |2λν | and |λν ± λν′ | with ν ′ ̸= ν). Pick an integer
N ≥ 1 + 2ϑ and set

δ = min
k∈K♮

|k|≤N

∣∣⟨k, λ⟩∣∣, γ = min
(
δ

N
,
|λ1|
2

)
;

in view of the non-resonance condition (17) one has δ > 0. Then the
claim of the lemma holds true with the given value of γ. Indeed, let
k ∈ K♮, so that |k1| = |k|−1. If |k| ≤ N then

∣∣⟨k, λ⟩∣∣ ≥ δ ≥ Nγ ≥ |k|γ.
If |k| > N use ϑ ≤ (N − 1)δ/2, which follows from the choice of N ,
and evaluate∣∣⟨k, λ⟩∣∣ ≥

∣∣k1λ1∣∣− ϑ ≥
(
|k| − 1

)
δ − (N−1)

2 δ

≥ |k| − 1

2
δ +

N

2
δ − (N − 1)

2
δ = |k|δ

2
≥ |k|γ.

3.2 Generalized Cauchy estimates

Here I refer to themore restrictive hypotheses of theorem 1.2, and in par-
ticular to the spaces P defined as in sect. 2.3. However, the same argu-
ments with very little simplifications apply also to the setting of sect. 2.2,
which applies to theorem 1.1. I will insert short comments in parentheses
concerning the latter case, where appropriate.

The estimates in this section strongly depend on a suitable splitting
of all functions over the subspaces P♯, P♮ and P♭. At a formal level,
it is useful to keep in mind the following table concerning the Poisson
bracket:

{·, ·} P♯

∣∣∣∣ P♮

∣∣∣∣ P♭

P♯ P♯

∣∣∣∣ P♮

∣∣∣∣ P♭

P♮ P♮

∣∣∣∣ P♯ ⊕ P♮ ⊕ P♭

∣∣∣∣ P♮ ⊕ P♭

P♭ P♭

∣∣∣∣ P♮ ⊕ P♭

∣∣∣∣ P♭

(24)

(For the subspaces defined as in sect.2.2 just remove P♮ from the central
case corresponding to the Poisson bracket between functions in P♮.) In
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view of the transformation formulæ (11) the situation to be considered
is the following. A generating function χ ∈ W ∩ Pr with some r ≥
1 is given in the form χ = L−1

H0
ψ, with known ψ ∈ W ∩ Pr. Since

W = R♯ ⊕ R♮ one has χ = χ♯ + χ♮, with an obvious meaning of the
notation. The operator Lχ may be applied either to a generic function
f = f ♯ + f ♮ + f ♭ ∈ Ps with s ≥ r or to a function in normal form
Z = Z♯ + Z♮ + Z♭ ∈ Z ∩ Pm with 0 < m < r (in theorem 1.1 one has
Z♮ = 0). In particular one has

Z♯ =
∑
j>1

zjx
j
1y
j
1, Z♮ =

∑
j>0, 2≤ν≤n

zj,νx
j
1y
j
1xνyν ,

due to the non–resonance conditions onλ. For some non–negative δ′, δ′′,
δ satisfying 0 ≤ max(δ′, δ′′) < δ ≤ 1/2 the norms ∥ψ∥1−δ′ , ∥f∥1−δ′′ and
∥Z∥1−δ′′ are assumed to be known, and one looks for an estimate of the
Lie derivative in a domain∆(1−δ)R. The following estimates will be used
in the rest of the paper.

(i) The generating function χ is estimated by

∥χ∥1−δ′ ≤
1

γ
∥ψ∥1−δ′ , (25)

with γ as in lemma 3.2.

(ii) The general estimate for the Lie derivative of a generic function f
is ∥∥Lχf∥∥1−δ ≤ 1

(δ − δ′)(δ − δ′′)Λ2
∥χ∥1−δ′ ∥f∥1−δ′′ (26)

with Λ as in (22). Denoting by
(
Lχ♮f ♭

)♮ the projection of Lχ♮f ♭

over P♮ one has∥∥(Lχ♮f ♭
)♮∥∥

1−δ ≤
4

(δ − δ′′)Λ2
∥χ∥1−δ′ ∥f∥1−δ′′ . (27)

(iii) For a function Z in normal form one has∥∥Lχ(Z♯ + Z♮)
∥∥
1−δ ≤

1

(δ − δ′′)γΛ2
∥ψ∥1−δ′ ∥Z∥1−δ′′ . (28)
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I recall the reader's attention on the missing denominator δ − δ′ in (27)
and (28). This is crucial for the convergence proof. For, working out the
convergence proof requires a quite accurate control of the accumulation
of the divisors δ − δ′, δ − δ′′ that appear in the generalized Cauchy esti-
mates for derivatives. The scheme in the next section is specially devised
in order to allow such a control.

The proof of (25) is a straightforward consequence of the definition
of the norm and of (13). For, the denominators are uniformly estimated
from below by γ, in view of lemma 3.2.

The proof of the estimates (26), (27) and (28) is a purely technical
matter, and is deferred to appendix B.

3.3 Recursive estimates

The aim of this section is to obtain estimates for the norms of the gen-
erating functions and of the transformed Hamiltonians, at every step of
the normalization procedure.

Consider a sequence of boxed domains ∆(1−δr)R, where {δr}r≥1

is a monotonically increasing sequence of positive numbers converging
to some d < 1/2. Let also δ0 = 0, and dr = δr − δr−1 for r ≥ 1, so
that dr < 1 for all positive r. The purpose is to look for estimates of the
norms of the generating function χr and of the normal form Zr in the
polydisk∆(1−δr−1)R, and of the functionsH

(r)
s in the domain∆(1−δr)R.

Let Jr,s for 1 < r < s be the set of integer arrays defined as

Jr,s =
{
J = {j1, . . . jk} : jm ∈ {1, . . . , r} , 1 ≤ k ≤ 2(s− 1) ,

k∑
m=1

log2 jm ≤ 2(s− 1− log2 s)
}
.

(29)
Let also J0,s = ∅ for s ≥ 1. Recalling that {dr}r≥1 is a sequence of
positive numbers not exceeding 1 define the sequence {Tr,s}0≤r<s as

T0,s = 1, Tr,s = max
J∈Jr,s

∏
j∈J

d−1
j . (30)
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The following properties will be used below: for 0 ≤ r ≤ r′ < s one has

Tr,s ≤ Tr′,s, (31)
1

d2r
Tr−1,rTr′,s ≤ Tr′,r+s. (32)

Checking (31) is easy: for r = 0 use dl ≤ 1 for l ≥ 1; for r > 0 use the
inclusion relation Jr,s ⊂ Jr′,s for r < r′. In order to prove (32) remark
that by definition one has

1

d2r
Tr−1,rTr′,s =

1

d2r
max

J∈Jr−1,r

∏
j∈J

d−1
j max

J ′∈Jr′,s

∏
j′∈J ′

d−1
j′

= max
J∈Jr−1,r

max
J ′∈Jr′,s

∏
j∈{r,r}∪J∪J ′

d−1
j .

It is enough to prove that {r, r} ∪ J ∪ J ′ =: J̃ ∈ Jr′,r+s. First check
that

#
(
J̃) = 2 + #(J) + #(J ′) ≤ 2 + 2(r − 1) + 2(s− 1)

= 2(r + s− 1).

On the other hand, since 1 ≤ j ≤ r− 1 for all j ∈ J and 1 ≤ j′ ≤ r′ for
all j′ ∈ J ′, one also has 1 ≤ j̃ ≤ r′ for all j̃ ∈ J̃ . Finally, evaluate∑

j̃∈J̃

log2 j̃ = 2 log2 r +
∑
j∈J
log2 j +

∑
j′∈J ′

log2 j
′

≤ 2 log2 r + 2(r − 1− log2 r)
+2(s− 1− log2 s)

≤ 2
[
r + s− 1− (1 + log2 s)

]
≤ 2

[
r + s− 1− log2(r + s)

]
,

where the elementary inequality 1+log2 s = log2 2+log2 s = log2(2s) >
log2(r + s) has been used (recall that r ≤ r′ < s). Hence, J̃ ∈ Jr′,r+s,
as claimed.
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I shall also use the numerical sequence {µr,s}r≥0,s≥0 defined as

µ0,0 = 0 , µ0,s = 1 for s > 0,

µr,s =
∑

0≤rp<s
µpr−1,rµr−1,s−rp for r > 0 and s ≥ 0. (33)

The recursive estimates are collected in

LEMMA 3.4. Let theHamiltonianH(0) satisfy ∥H(0)
s ∥1 ≤ hs−1E for some

constants h ≥ 0 and E > 0. Let d0 = 1 and {dr}r≥1 be an arbitrary
sequence of positive numbers satisfying

∑
r≥1 dr = d with d < 1. Let

also δ0 = 0 and δr = d1 + . . . + dr. Then for s > r ≥ 1 the following
estimates hold true:

∥χr∥1−δr−1 ≤ µr−1,rTr−1,rC
r−1E

γ
, (34)

∥Zr∥1−δr−1 ≤ µr−1,rTr−1,rC
r−1 E

dr−1
, (35)

∥Z♯r + Z♮r∥1−δr−1 ≤ µr−1,rTr−1,rC
r−1E, (36)

∥H(r)
s ∥1−δr ≤ µr,sTr,sC

s−1 E

dr
, (37)

∥H(r),♯
s +H(r),♮

s ∥1−δr ≤ µr,sTr,sC
s−1E, (38)

where

C = h+
4e2E

γΛ2
, (39)

and µr,s and Tr,s are the sequences defined by (30) and (33).

Remark that (34), (36) and (38) differ from (35) and (37), respectively,
only because a divisor dr is missing.

PROOF. By induction. For r = 0 only (37) and (38) are meaningful,
and hold true in view of d0 = µ0,s = T0,s = 1 and of h < C. The
induction consists in first proving that if (37) and (38) hold true up to
r − 1 then (34), (35) and (36) are true for r; next proving that if (34),
(35) and (36) hold true up to r then (37) and (38) are true for r.
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Let r > 0 and put r − 1 in place of r and r in place of s in (37)
and (38). Recalling that only H(r−1),♯

r + H
(r−1),♮
r is used in order to

determine χr use the definition of the norm, the form of the solution
of eq. (10) discussed in sect. 2, and the estimate (25). This immedi-
ately shows that (34), (35) and (36) are true for r provided (37) and (38)
hold true for r − 1. Coming to (37) and (38) and recalling the recursive
definitions (11) there are only two kinds of terms to be estimated, namely
1
s!L

s
χr
Zm for 1 ≤ m < r and 1

p!L
p
χrH

(r−1)
(s−p)r+m for 0 ≤ p ≤ s and

0 ≤ m < r. For, remarking that Zr and H
(r−1)
r are estimated by ex-

actly the same quantity it is safe to estimate
∥∥H(r)

sr

∥∥ by replacing Zr with
H

(r−1)
r in the second of (11). This is tantamount to extending the sum

in the second of (11) to p = s − 1 and making it identical with the sum
in the first of (11), withm = 0.

Denote φs = Lsχr
Zm, where r > 1, and split φs = φ♯s + φ♮s + φ♭s.

I claim ∥∥φs∥∥1−δr ≤ s!
(

e
drΛ

)2(s−1)
∥χr∥s−1

1−δr−1

D
dr
, (40)

∥∥φ♯s + φ♮s
∥∥
1−δr ≤ s!

(
2e
drΛ

)2(s−1)
∥χr∥s−1

1−δr−1
D, (41)

for s ≥ 1, where

D = µr−1,rµm−1,mTr,r+mC
r+m−1E (42)

The proof proceeds by induction. Let s = 1. By the general estimate (26)
one has ∥∥φ1

∥∥
1−δr ≤ 1

drdmΛ2

∥∥χr∥∥1−δr−1

∥∥Zm∥∥1−δm−1
.

Using (34) and (35) one gets

∥∥φ1

∥∥
1−δr ≤ 1

dr
µm−1,mµr−1,r

1

dm−1dm
Tm−1,mTr−1,r C

r+m−2 E
2

γΛ2
,

so that (40) immediately follows from (31), (32) and (39).
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Still keeping s = 1, (41) is obtained by remarking that the con-
tributions to φ♯1 + φ♮1 come only from Lχr(Z

♯
m + Z♮m) and

(
L
χ♮
r
Z♭m

)♮.
Proceeding as above, from (28) and (27) one gets∥∥φ♯1 + φ♮1

∥∥
1−δr ≤ 1

γdmΛ2

∥∥H(r−1),♯
r +H(r−1),♮

r

∥∥
1−δr−1

∥∥Zm∥∥1−δm−1

+
4

dmΛ2

∥∥χr∥∥1−δr−1

∥∥Zm∥∥1−δm−1
.

Then (41) for s = 1 follows from (35), (38) for r − 1 and (39). Remark
that the divisor dr does not appear here.

Let now s > 1, and assume that (40) be true up to s− 1. Recalling
that the divisor dr due to the generalized Cauchy estimates is arbitrary,
replace dr with s−1

s dr in the estimates (40) and (41) forφs−1, thus getting∥∥φs−1

∥∥
1−δr+dr/s

≤ (s− 1)!

(
s

s− 1

)2s−3( e

drΛ

)2(s−2)

∥χr∥s−2
1−δr−1

D

dr
,∥∥φ♯s−1 + φ♮s−1

∥∥
1−δr+dr/s

≤ (s− 1)!

(
s

s− 1

)2s−4( 2e

drΛ

)2(s−2)

∥χr∥s−2
1−δr−1

D.

(43)

Consider first the estimate (41). Remarking that the contributions to
φ♯s + φ♮s come only from Lχr

(
φ♯s−1 + φ♮s−1

)
and

(
L
χ♮
r
φ♭s−1

)♮, use (26)
and (27) to estimate∥∥φ♯s + φ♮s

∥∥
1−δr ≤

∥∥Lχr

(
φ♯s−1 + φ♮s−1

)∥∥
1−δr +

∥∥(L
χ♮
r
φ♭s−1

)♮∥∥
1−δr

≤ s

d2rΛ
2

∥∥χr∥∥1−δr−1

∥∥φ♯s−1 + φ♮s−1

∥∥
1−δr+dr/s

+
2s

drΛ2

∥∥χr∥∥1−δr−1

∥∥φs−1

∥∥
1−δr+dr/s
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Replacing (43) in the latter expression one gets

∥∥φ♯s + φ♮s
∥∥
1−δr ≤ s!

d2rΛ
2

(
s

s− 1

)2s−3( 2e

drΛ

)2(s−2) ∥∥χr∥∥s−1

1−δr−1
D,

so that (41) follows from the trivial inequality
(

s
s−1

)s−1
< e. The esti-

mate (40) is checked with a similar calculation, just taking into account
that (26) must be used in order to estimate Lχrφs−1. This produces an
extra divisor dr with respect to the calculation above.

Finally, replace (34) and (42) in (40) and (41). Using also (39), one
gets

∥∥φs∥∥1−δr ≤ s!µs−1
r−1,r

(
1

d2r
Tr−1,r

)s−1

Tr,r+mC
sr+m−1 E

dr
.

∥∥φ♯s + φ♮s
∥∥
1−δr ≤ s!µs−1

r−1,r

(
1

d2r
Tr−1,r

)s−1

Tr,r+mC
sr+m−1E.

Using s− 1 times the inequalities (31) and (32) one easily gets(
1

d2r
Tr−1,r

)s−1

Tr,r+m ≤
(

1

d2r
Tr−1,r

)s−2

Tr,2r+m ≤ . . . ≤ Tr,sr+m.

Thus one concludes

1

s!

∥∥Lsχr
Zm

∥∥
1−δr

≤ µsr−1,rµm−1,mTr,sr+mC
sr+m−1 E

dr
,

(44)

1

s!

∥∥(Lsχr
Zm

)♯
+

(
Lsχr

Zm
)♮∥∥

1−δr

≤ µsr−1,rµm−1,mTr,sr+mC
sr+m−1E.

(45)
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The estimate for 1
p!L

p
χrH

(r−1)
(s−p)r+m is aminor variazione of the scheme

above. Only the first stepmust be omitted. E.g., setφp = LpχrH
(r−1)
(s−p)r+m

and proceed as follows. Using (37) for r − 1 get∥∥φ0

∥∥
1−δr−1

≤ µr−1,sr+mTr,sr+mC
sr+m−1E;

this starts the induction on p. Then proceed for p > 0 as above. The
conclusion is

1

p!

∥∥Lpχr
H

(r−1)
(s−p)r+m

∥∥
1−δr≤ µpr−1,rµr−1,(s−p)r+mTr,sr+mC

sr+m−1 E

dr
,

1

p!

∥∥(Lpχr
H

(r−1)
(s−p)r+m

)♯
+

(
Lpχr

H
(r−1)
(s−p)r+m

)♮∥∥
1−δr

≤ µpr−1,rµr−1,(s−p)r+mTr,sr+mC
sr+m−1E.

Collecting the latter equations together with (44) and (45), and re-
ferring to the transformation formulæ (11) it is now an easy matter to ver-
ify that (37) and (38) hold true provided the sequence µr,s for 0 < r < s
is defined as

µ0,s = 1 for s > 0,

µr,sr+m = µsr−1,rµm−1,m +

s−1∑
p=0

µpr−1,rµr−1,(s−p)r+m

for r ≥ 2, s ≥ 1, 1 ≤ m < r.

µr,sr =

s−1∑
p=0

µpr−1,rµr−1,(s−p)r for r ≥ 1, s ≥ 2.

(46)
This looks quite different from (33). However, I claim that (33) is just
a harmless extension of (46). Indeed, just redefine the indexes by re-
placing sr + m with s, also accepting s ≥ 0, which removes the im-
plicit restriction s > r. This is harmless, because for s ≤ r one gets
for (33) µr,s = µr−1,s. Therefore, in the second line one can replace
µm−1,m = µr−1,m and include it into the sum. This completes the proof
of lemma 3.4.
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3.4 Completion of the proof of lemma 3.1

The statement of the lemma concerns only the sequence of generating
functions, that are estimated by (34). The completion of the proof rests
on a suitable choice of the sequence {dr}r≥1, that was left arbitrary, and
on a suitable estimate of the sequence {µr,s}s≥r≥0. As a matter of fact,
only the diagonal elements of the latter sequence need to be estimated,
because the estimate for the generating functions in lemma 3.4 involves
only µr−1,r = µr,r.

First, pick a value for d, with 0 < d < 1/2, and set

dr =
b

r2
, b =

6d

π2
,

so that
∑

r≥1 dr = d in view of
∑

r≥1 1/r
2 = π2/6. The immediate

consequence is that

Tr,s ≤
(
16

b2

)s−1

. (47)

For, use the definition (30) and recall the definition (29) of Jr,s; then let
J ∈ Jr,s and evaluate ∏

j∈J

1

dj
≤ 1

b2(s−1)

∏
j∈J

j2,

because #(J) ≤ 2(s− 1). On the other hand one has

log2
∏
j∈J

j2 = 2
∑
j∈J
log2 j ≤ 4(s− 1).

This proves (47)
Coming to the sequence (33), the problem is to show that µr−1,r ≤

ηr−1 for some positive η. For, only µr−1,r enters the estimate (34). By
separating the term p = 0 in the sum one gets

µr,s = µr−1,s + µr−1,r

∑
0≤q<s−r

µqr−1,rµr−1,s−r−rq

= µr−1,s + µr−1,rµr,s−r.
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Putting r − 1 in place of r and r in place of s in the latter formula one
gets

µr−1,r = µr−2,r + µr−2,r−1µr−1,1

= µr−3,r + µr−3,r−2µr−2,2 + µr−2,r−1µr−1,1

. . .

≤ µ0,r + µ0,1µ1,r−1 + . . . µr−2,r−1µr−1,1

≤ µ0,1µr−2,r−1 + . . .+ µr−2,r−1µ0,1.

The last inequality requires a justification. Just use

µ0,r < µ1,r < . . . < µr−1,r = µr,r = . . . ,

which is an immediate consequence of the definition. Then, for r−j ≥ j
substitute µr−j,j = µj−1,j , and for r − j < j use µr−j,j < µj−1,j , and
so also µr−j,j + 1 ≤ µj−1,j which gets rid of the extra term µ0,r = 1.

Thus, the sequence {νr}r≥1 defined as

ν1 = 1, νr =

r−1∑
j=1

νjνr−j for r > 1 (48)

is a majorant of {µr−1,r}r≥1. This is known as the Catalan's sequence,
and one has

νr =
2r−1(2r − 3)!!

r!
≤ 4r−1, (49)

where the common notation (2n + 1)!! = 1 · 3 · . . . · (2n + 1) has been
used.

Thus, we conclude that µr−1,r ≤ 4r−1. Inserting the latter inequal-
ity and (47) in (34) the statement of lemma 3.1 follows.

4. PROOF OF THEOREM 1.1

Having established the estimate of lemma 3.1 on the sequence of gen-
erating functions it is now a standard matter to complete the proof of
theorem 1.1. Hence this section will be less detailed with respect to the
previous ones.

The situation to be dealt with is the following. An infinite se-
quence {χr}r≥1 of generating functions is given, with χr ∈ Pr+2 (a
homogeneous polynomial of degree r + 2) satisfying ∥χr∥R ≤ βr−1G
for some real vector R with positive components and some positive β
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and G. Define a corresponding sequence of canonical transformations
(x(r−1), y(r−1)) = exp(Lχr)(x

(r), y(r)). By composition one also con-
structs a sequence {C(r)}r≥0 of canonical transformations (x(0), y(0)) =
C(r)(x(r), y(r)) recursively defined as

C(0) = Id, C(r) = exp(Lχr) ◦ C(r−1),

Id denoting the identity operator. The problem is to prove the following
statements.

(i) Every near the identity canonical transformation defined via the ex-
ponential operator exp(Lχr) is expressed as a power series which
is convergent in a polydisk ∆ϱR for some positive ϱ.

(ii) For any function f(x(r−1), y(r−1)) analytic in∆ϱR the transformed
function is analytic in the same polydisk, and moreover

f(x(r−1), y(r−1))
∣∣∣
(x(r−1),y(r−1))=exp(Lχr )(x

(r),y(r))

=
[
exp(Lχr)f

]
(x(r), y(r)).

(iii) The sequence
{
C(r)

}
r≥0

of canonical transformations converges

for r → ∞ to a canonical transformation C(∞) which is analytic in
a polydisk ∆(1−d)ϱR for some positive d < 1/2.

(iv) For any function f analytic in ∆ϱR the sequence recursively de-
fined as f (0) = f , f (r) = exp(Lχr)f

(r−1) converges for r → ∞
to a function f (∞) that is analytic in ∆(1−d)ϱR, and moreover one
has

f (∞) = f ◦ C(∞).

The statement (i) actually reduces to Cauchy's proof of the existence
and uniqueness of the local solution of an analytic system of differential
equations. For, the transformation defined via the exponential operator
is the time–one canonical flow induced by the Hamiltonian vector field
generated by χr. The statement (ii) actually claims that the substitution
of variables in a function f may be effectively replaced by the application
of the exponential operator to f ; this is indeed the basis of the algorithm
for constructing the normal form used in sect. 2. A detailed proof of both
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these statements may be found, e.g., in [9]; however, the reader may be
able to reconstruct the proof by following the hints in [3].

The proof of (iii) rests on the following remarks. In the polydisk
∆ϱR one has |χr(x, y)| ≤ ϱr+2 ∥χr∥ϱR; this, in turn, implies that

∣∣x(r)−
x(r−1)

∣∣ ∼ βr−1ϱr+2 and
∣∣y(r) − y(r−1)

∣∣ ∼ βr−1ϱr+2. The geomet-
ric bound on the latter quantities implies that

∑
r>1

∣∣x(r) − x(r−1)
∣∣ and∑

r>1

∣∣y(r) − y(r−1)
∣∣ behave like geometric series, i.e., converge for ϱ

small enough. Thus, the claim follows from Weierstrass theorem. Fi-
nally, the statement (iv) follows from (ii) being true for all r > 0, which
implies that both sequences f (r) = C(r)f and f ◦ C(r) converge to the
same limit. This concludes the proof of theorem 1.1.

APPENDIX A: JUSTIFICATION OF THE NORMALIZATION ALGORITHM

Justifying the normalization algorithm of sect. 2 is just matter of rearrang-
ing terms in the expansion of exp(Lχr)H

(r−1). Considering firstH0 and
H

(r−1)
r together, one has

exp(Lχr)
(
H0 +H(r−1)

r

)
= H0 +LχrH0 +

∑
s≥2

1

s!
Lsχr

H0

+H(r−1)
r +

∑
s≥1

1

s!
Lsχr

H(r−1)
r .

Here,H0 is the first term in the transformed HamiltonianH(r) in (9). In
view of (10) one has LχrH0 + H

(r−1)
r = Zr, which kills the unwanted

termH
(r−1)
r and replaces it with the normalized term Zr. The two sums

may be collected and simplified by calculating∑
s≥2

1

s!
Lsχr

H0 +
∑
s≥1

1

s!
Lsχr

H(r−1)
r

=
∑
s≥2

1

(s− 1)!
Ls−1
χr

[
1

s

(
LχrH0 +H(r−1)

r

)
+
s− 1

s
H(r−1)
r

]
=

∑
s≥2

1

(s− 1)!
Ls−1
χr

(
1

s
Zr +

s− 1

s
H(r−1)
r

)
.
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Here, both Ls−1
χr

Zr and Ls−1
χr

H
(r−1)
r are homogeneous polynomials of

degree sr + 2, that are added to H(r)
sr in the second of (11).

Proceed now by transforming the functions Z1, . . . , Zr−1 that are
already in normal form. Recall that no such term exists for r = 1. For
r > 1 calculate

exp(Lχr)Zm = Zm +
∑
s≥1

1

s!
Lsχr

Zm, for 1 ≤ m < r.

The term Zm is copied into H(r) in (9). The term Lsχr
Zm is a homoge-

neous polynomial of degree sr +m + 2 that is added to H(r)
sr+m in the

first of (11).
Finally, consider all terms H(r−1)

s with s > r, that may be written
as H(r−1)

lr+m with l ≥ 1 and 0 ≤ m < r, the case l = 1 , m = 0 being
excluded. One gets

exp(Lχr)H
(r−1)
lr+m =

∑
p≥0

1

p!
Lpχr

H
(r−1)
lr+m

where LpχrH
(r−1)
lr+m is a homogeneous polynomial of degree (p+ l)r+m.

Collecting all homogeneous terms withm = 0, l ≥ 2 and p+ l = s ≥ 2

one gets
∑s−2

p=0
1
p!L

p
χrH

(r−1)
(s−p)r, that is added toH

(r)
sr in the second of (11).

Similarly, collecting all homogeneous terms with 0 < m < r, l ≥ 1 and
p+l = s ≥ 1 one gets

∑s−1
p=0

1
p!L

p
χrH

(r−1)
(s−p)r+m, that is added toH

(r)
sr+m in

the first of (11). The latter case does not occur for r = 1. This completes
the justification of the formal algorithm.

APPENDIX B: TECHNICAL CALCULATIONS

The aim is to check the estimates (26), (27) and (28). Write, generically,
χ =

∑
j,k cj,kx

jyk and f =
∑

j,k fj,kx
jyk. Then compute

Lχf =
∑

j,k,j′,k′

n∑
l=1

j′lkl − jlk
′
l

xlyl
cj,kfj′,k′x

j+j′yk+k
′
. (50)
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Using the definition of norm evaluate

∥Lχf∥1−δ

≤
∑

j,k,j′,k′

n∑
l=1

|j′lkl − jlk
′
l|

R2
l

|cj,k| |fj′,k′ |(1− δ)|j+k|+|j′+k′|−2Rj+k+j
′+k′

≤ 1

Λ2

∑
j,k

∑
j′,k′

n∑
l=1

∣∣j′lkl − jlk
′
l

∣∣ |cj,k| ((1− δ′)− (δ − δ′)
)|j+k|−1

Rj+k

×|fj′,k′ |
(
(1− δ′′)− (δ − δ′′)

)|j′+k′|−1
Rj

′+k′ .

If f is a generic function, then in view of |jl| ≤ |j + k| and kl ≤ |j + k|
one has

n∑
l=1

|j′lkl − jlk
′
l| < |j + k|

n∑
l=1

|j′l + k′l| = |j + k| · |j′ + k′|. (51)

Replacing in the estimate above and using the elementary inequality

m(λ− x)m−1 <
λm

x
for 0 < x < λ andm ≥ 1 (52)

one gets

∥Lχf∥1−δ ≤
1

Λ2

∑
j,k

|cj,k| |j + k|
(
(1− δ′)− (δ − δ′)

)|j+k|−1
Rj+k

×
∑
j′,k′

|fj′,k′ | |j′ + k′|
(
(1− δ′′)− (δ − δ′′)

)|j′+k′|−1
Rj

′+k′

≤ 1

(δ − δ′)(δ − δ′′)Λ2

∑
j,k

|cj,k| (1− δ′)|j+k|Rj+k

×
∑
j′,k′

|fj′,k′ |(1− δ′′)|j
′+k′|Rj

′+k′ ,

(53)



158 ANTONIO GIORGILLI

from which (26) immediately follows in view of the definition of the
norm.

In order to prove (27) recall that χ♮ contains only monomials
cj,kx

jyk with j + k ∈ K♮. The projection
(
Lχ♮f ♭

)♮ is just part of the
general expression (50). In particular the value l = 1 in the sum must
be discarded because the resulting monomials belong to P♭. Moreover,
for k ∈ K♮ one has

∑n
l=2 |jl + kl| ≤ 2. Thus the estimate (51) may be

replaced by

n∑
l=2

|j′lkl − jlk
′
l| < 2

n∑
l=2

|j′l + k′l| = 2|j′ + k′|. (54)

Hence the inequality (52) must be used only for the term involving |j′ +
k′|, and there is no need to introduce the divisor δ − δ′. Use instead
1/(1− δ) < 2 in view of δ < 1/2.

Coming finally to (28), replace f in the general expression (50) by
Z♯+Z♮ =

∑
ν∈K♯∪K♯ zν,νx

νyν . Recall also that the coefficients cj,k of χ

have the form cj,k =
ψj,k

⟨k−j,λ⟩ , in view of (13). Then (51) may be replaced
by ∑

l

|νl(jl − kl)| ≤ |ν|
∑
l

|jl − kl| ≤ |ν| |j − k| (55)

On the other hand, by lemma 3.2 one has

|cj,k| ≤
|ψj,k|

|j − k|γ
,

so that the factor |j − k| in (55) is compensated by the divisor here.
This removes the need to introduce the divisor δ − δ′ in the rest of the
estimates. Use instead (1− δ)|j+k|−1 ≤ 2(1− δ)|j+k|, which holds true
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in view of δ < 1/2. Then (53) is replaced by

∥Lχ(Z♯ + Z♮)∥1−δ

≤ 1

Λ2

∑
j,k

2

γ
|ψj,k| (1− δ)|j+k|Rj+k

×
∑
ν∈K♯

|zν,ν | |ν|
(
(1− δ′′)− (δ − δ′′)

)2|ν|−1
R2ν

≤ 1

(δ − δ′′)γΛ2

∑
j,k

|ψj,k| (1− δ′)|j+k|Rj+k

×
∑
ν∈K♯

|zν,ν |(1− δ′′)2|ν|R2ν .

Thus (28) follows in view of the definition of the norm.
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