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SUNTO. – Nella prima parte della Nota si sviluppa una cosmologia schwarzschildiana,
che, in virtù della repulsione gravitazionale scoperta da Hilbert, rende ragione sia dello
spostamento verso il rosso delle righe spettrali delle galassie sia dell’esistenza dell’Ener-
gia Oscura. Nella seconda parte si discutono talune conseguenze – ignorate dalla lette-
ratura relativistica – della metrica di Friedmann. –

***
ABSTRACT. – In a First Part we give a Schwarzschildian generalization of the Newton-
ian, and Friedmannian, models of universe. By virtue of the Hilbertian gravitational
repulsion, our formulation explains the red-shifts of the galaxies and the existence of
a DARK ENERGY. In the Second Part we discuss two ignored consequences of
Friedmann’s metrics: i ) the existence of a time coordinate such that there is no ex-
pansion of Friedmann’s universes; ii ) a corollary of a theorem by Hönl (1949), which
tells us that the physical meaning of the point-origin of the galaxy paths is very prob-
lematic.

Introduction. – 1. The concept of a Schwarzschildian cosmology. – 2. Some results of
the Newtonian and Friedmannian models of universe. – 3. Discussion of the properties
of the Schwarzschildian galaxy trajectories. We prove that there exist values of the
galaxy velocities which explain (without the intervention of the Lambda-term) the
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galactic red-shifts and the existence of a DARK ENERGY. – 4. The concepts of inertial
systems and inertial time according to the operational formulation by L. Lange. – 5.
The time coordinate t’ for which there is no expansion of Friedmann’s universe – and
some consequences of this fact. – 5bis. The Hubble’s law as a first approximation of
Friedmann’s treatment. The geodesic null-lines of Friedmann’s metrics. – 5ter. A
rèsumè of our results about galaxy red-shifts and Dark Energy. – 6. A comparison of
the expansion “mechanisms” in the Newtonian, Friedmannian, and Schwarzschildian
cosmologies. – 7. As a consequence of a theorem by Hönl, Friedmann’s models of uni-
verse lose their physical meaning if R → 0. – Appendix: Schwarzschildian models with
a cosmological Lambda-term. –

INTRODUCTION. – The equations of motion of the Newtonian
models [1] and of Friedmann’s models (with zero pressure) [2] are
mathematically isomorphic, as it is known (see, e.g., [3]). However,
while Friedmann’s metrics explain the observational red-shifts of the
galactic spectral lines, the Newtonian models give Doppler red-shifts
that are in some accord with the observations only if we add to the
Newtonian equations of motion the cosmological Λ-term (see, e.g., [4]).

In the First Part of the present paper we develop a
Schwarzschildian generalization of the Newtonian – and Friedmannian
– models. Our results explain (without the Λ-term) the red-shifts of the
galaxies and the Dark Energy : indeed, there exist (by virtue of Hilbert’s
gravitational repulsion [5]) innumerable galaxy trajectories which go to
infinite with increasing galaxy velocities.

In the Second Part we discuss two consequences of Friedmann’s
metrics, which have not been considered in the relativistic literature: i )
the existence of a time coordinate t' for which there is no expansion; ii)
a remarkable corollary of a result by Hönl (1949), which tells us that it
is very problematic to assign a physical meaning to the common point-
origin of the galaxy trajectories.

FIRST PART

1. – As in the models cited in [1] and [2], in the following treat-
ment the galaxies are represented by the particles of a (continuous)
“dust” with a mass density ϱ = ϱ(t). We start from the consideration of
Schwarzschild’s manifold created by a finite matter distribution about
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a centre with radial symmetry. As it is well known, the metric external
to this spherical distribution is given by the following ds2 [6]:

,               (1)

where: R = R(r) is any regular function of r such that the metric
becomes Minkowskian at the spatial infinite; α ≡ 2m ≡ 2(G/c2)M , if M
is the mass of the gravitating distribution.

Let us imagine an expanding “cosmic sphere” composed of the
mentioned “dust” particles. Let the radial coordinate of the spherical-sur-
face points at time t be RS (t) ≡RS [r(t)] – and denote with RI = RI (t) ≤
Rs (t) the radial coordinate of the surface points of any concentric internal
sphere I. Then, V (R1)ϱ(t) = M (RI) = αI c2 /(2G), if V (R1) is the volume
of sphere I. In the sequel, we shall omit the index I and write simply R, α.

The trajectories of the galaxy particles are (radial) geodesics,
because the matter tensor of the dynamical system is Tjk = ϱuj uk, (i, k =
0, 1, 2, 3), with uj a radial four-velocity. These geodesics are identical to
the radial geodesics of the test-particles of metric (1).

We have a relativistic generalization of the Newtonian formulation
[1], which is also more general than Friedmann’s treatment [2].

2. – In the Newtonian formalism the velocity of a particle is v =
dR/dt, if R = R(t) is its radial coordinate. In a “parabolic” motion we
have v(R → ∞) = 0; in a “hyperbolic” motion we have v(R → ∞) = a
constant ≠ 0; in an “elliptic” case the particle describes a finite trajecto-
ry, first in the positive and then in the negative direction.

Analogous results in Friedmann’s formalism for dR/dt, where now
ξ/R2(t) is the curvature of the space section t =constant (ξ = 0; −1; +1).

3. – We adapt to our treatment Hilbert’s formulae for the radial
geodesics of the test-particles of Schwarzschild’s metric [5].

In lieu of his specific coordinate r, we employ the general coordi-
nate R(r), denote with −|A| his constant A (< 0), and write c for the
light speed in lieu of 1. Then, Hilbert’s eq. (54) becomes:

,                                      (2)

where R is the radial coordinate of a generic galaxy of the expanding sphere.
If |A| = 1, we have the analogue of a “parabolic” trajectory: Ṙ (R→∞) = 0.
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If |A| < 1, we have the analogue of a “hyperbolic” trajectory: Ṙ (R→∞)
= (1 − |A|)1/2, a constant. In the analogue of the “elliptic” case we have |A|
> 1, and R cannot be greater than |A|α/(|A| − 1); the particle “ascends”
as far as Ṙ becomes zero (i.e., when R = |A|α/(|A| − 1)), then it reverts
its motion and travels again over the “ascensional” trajectory.

The accelerationR̈ as a function of A can be computed by deriv-
ing eq. (2) with respect to t: d(Ṙ2)/d(ct) = 2 ṘR̈ ; we obtain:

;                                          (3)

if R̈(R ∗) = 0, we have

.                                   (4)

When R > R∗ there is attraction: R̈ < 0; when R < R∗ there is
repulsion: R̈ > 0.

If 0 ≤ |A| ≤ 1 no superior limit exists for the values of R, and Ȑ
(R→ ∞) = 0.

The substitution of Ṙ2 of eq. (2) in Hilbert’s eq. (53):

,                                                              (5)

gives

,                 (6)

and we see again that R ≤ |A|α/(|A| − 1) when |A| > 1.
Eq. (5) tells us that we have attraction when

,                                                                                     (7)

and repulsion when

.                                                                                    (7’)

Since R̈ is zero when Ṙ2 = (1/3)(R − α)2/R2, if we write

,                                        (8)

we obtain obviously R = R∗ ≡ (3|A|α)/(3|A| − 2).
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If 0 ≤ |A| ≤ (2/3), the acceleration R̈ is always different from zero
and positive, there is repulsion for all the values of R. The velocity | Ṙ |
is maximal at R = ∞, where | Ṙ (∞)| = (1 − |A|)1/2, i.e. (1/3)√3 ≤ | Ṙ (∞)|
≤ 1. (In particular, if A = 0 we have | Ṙ (∞)| = 1.)

We see that there are values of the velocity which can explain the
observational red-shifts of the galaxies by virtue of a Doppler effect. Of
course, there are also galactic gravitational red-shifts, which are created
by the mass M of the expanding sphere.

Last but not least, we emphasize that our results give a clear
explanation (without the cosmological Λ-term) of the observational
existence of a Dark Energy [7].

At the end of the paper, the reader will find some diagrams of
repulsion trajectories.

SECOND PART

4. – It is interesting to compare the concepts of spatial reference-
frames and of time-scale in Newtonian and Friedmannian cosmologies.

For Newton’s theory (and also for the special theory of relativity)
the formulation of these concepts given by L. Lange in 1886 is the best
[8]. It is composed of two definitions and two empirical propositions:

Definition I. – An inertial frame is every spatial coordinate system
such that with reference to it the paths of three mass-points, projected
from the same space point in three different directions, not belonging
to the same plane, and then left to themselves, are straight lines. –

Empirical proposition J. – With reference to an inertial system, the
path of every other mass-point left to itself is straight line. –

Definition II. – Inertial time-scale means every time-scale with
respect to which a mass-point left to itself traverses equal distances in
equal time intervals in its inertial path. –

Empirical proposition II. – With respect to an inertial time-scale,
every other mass-point also traverses equal distances in its inertial path
in equal time intervals. –

With Lange’s formulation, Newton theory and the Newtonian
cosmology do not need any metaphysical assumption, in particular the
assumptions of an absolute space and an absolute time. The usefulness
of the Copernican system rests on the experimental validity of the
propositions I and II .
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5. – The fundamental formula of the Friedmannian red-shifts:
ν(t)R(t) = constant, from which: −dν/ν = dR/R, is usually demonstrated
from the standpoint of geometrical optics, which is implicitly contained
in the expression of the spatio-temporal interval ds.

However, there is also a proof based on wave optics, which is par-
ticularly interesting from a physical point of view. It was obtained in
1931 by v. Laue [9]. He made a time transformation t = t(t'), where t is
Friedmann’s time and t' is a suitable time such that with respect to it the
homogeneous Maxwell equations assume a Minkowskian form. Thus, it
is possible to write F'jk = F'jk

(0) exp(iν't'), where F'jk
(0) is the amplitude of

the e.m. field F'jk and ν' is a constant frequency. Then, v. Laue comes
back to Friedmann’s time t, and remarking that R(t) changes slowly
with respect to the e.m. oscillations, he can conclude that ν(t) =
ν'c/R(t), from which ν(t)R(t) = constant; q.e.d. –

Now, it seems to us that the equations F'jk = F'jk
(0) exp(iν't') give an

important conceptual information: there exists a time coordinate t' with
respect to which we have no expansion of the universes. In reality,
Friedmann’s time coordinate t is – with a good approximation – relative
to an observer residing in a given, but whatever, galaxy (e.g., the Milky
Way). (Remark that time t, by virtue of the Gaussian form of
Friedmann’s ds2 has a primordial character with respect to the proper
times of the galaxies.) In conclusion, Friedmann’s models of universe
are, in a sense, “Ptolemaic”, i.e. relative to the observational data
recorded by galactic observers. And, of course, Friedmann’s age of the
universe has a value that is dependent on Friedmann’s Gaussian frame,
and therefore it is devoid of an invariant meaning.

5bis. – It was emphasized, in particular, by McVittie [10] that
some commonly adopted quantities of Friedmann’s formulation as:
Hubble’s parameter (or Hubble’s “constant”), acceleration parameter,
deceleration factor, etc., are approximate notions, that can be properly
defined by a suitable series expansion of 1/R(t).

If the indices o and s denote, resp., the observer and a light
source, the fundamental formula of the cosmological red-shift: ν (t)R(t)
= constant tells us that

,                                                                                                (9)

from which
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.                                                                                           (9’)

Let us call: td the departure-time instant of light; τ , its travel-time;
td, its arrival-time instant. We have: R(td) = R(to − τ ); R(to) ≡ Ro, and
the following series (Ṙ ≡ dR/dt):

;                              (10)

Hubbles’s “constant”:

,                                                                                          (11)

acceleration parameter:
,                                                                                          (12)

deceleration factor:

;                                                                            (13)

from which:

.                                                                (14)

The first term gives the Hubble’s law. –

Finally, we recall that the ds2 of Friedmann’s metrics can be writ-
ten, with generic dimensionless space-coordinates x1, x2, x3, in the fol-
lowing way:

,                                                                         (15)

.                                   (16)

The equation ds2 = 0 of the null-geodesics tells us that

,                                                                                          (17)

from which:
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.                                                      (17’)

5ter. – In our approach the accord with the observations concern-
ing the cosmological red-shifts is certainly assured by the Doppler
effect of the speeds on repulsive trajectories – and also by a gravitation-
al Schwarzschildian effect, created by the total mass of the moving
galaxies. However, the very novelty of our models resides in their plain
explanation of the Dark Energy, explanation that follows from a con-
cept of general relativity (Hilbertian repulsion), without the interven-
tion of the cosmological Λ-term.

6. – In the Newtonian and Schwarzschildian cosmologies the
expansion of the universe is generated by radial motions of the galaxies.
In Friedmannian cosmology the galaxies have time-independent spatial
coordinates, but the three-dimensional space is subjected to progressive
dilatations (or contractions). The equations of motions of Newtonian and
Friedmannian formulations are mathematically equivalent. Our formula-
tion is more general, and contains them as approximations.

7. – We shall now expound a simple theorem by Hönl [11], that
has an interesting consequence regarding the meaning of the origin, R(t
= 0) = 0, of Friedmann’s expansion of the universe.

Let us write the do2 of eq. (16) in angular coordinates ϑ, ϕ, and Θ
(0 ≤ Θ ≤ π):

,                                         (18)

where sin2 Θ, sinh2 Θ, Θ2 correspond, respectively, to positive, negative,
zero spatial curvature. The trajectories of the galaxies are geodesic lines
characterized by Θ =const, ϑ =const, ϕ =const.

Hönl considers a geodesic of a test-particle such that ϑ =const, ϕ
=const, Θ = Θ(t). From

                                                 
(19)

we obtain the following Lagrange equation ( 
.
Θ = dΘ/dt):
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,                                                               (20)

from which:

.                                                                  (21)

Now, the changes with time of the distance RΘ of the test-particle
from point Θ = 0 are equal to R

.
Θ + ṘΘ; but ṘΘ is the speed of a point

with a constant Θ, which goes far from Θ = 0. Therefore the speed of
the test-particle is R

.
Θ , and its linear momentum P is

,                                                                             (22)

if ε is the very small mass of the particle.
Eq. (21) tells us that

.                                                                                     (23)
It follows from this equation that P →∞, if R → 0. And it follows

from Friedmann’s equations that

,                                                                                   (24)

from which we see that the mass density ϱ of the galaxy “dust” goes to
infinite if R → 0. But with a very great mass density the momentum P of
the test-particle must be very small – as it is physically clear –, and not
very great as it would follow from eqs. (23), (24). In conclusion,
Friedmann’s models of universe lose their physical meaning when R → 0.

APPENDIX

As it is known, the perfect equivalence between the equations of
motion of the Newtonian and Friedmannian models holds also with the
addiction of the cosmological Λ-term.

Our formulation too allows the addiction of the Λ-term. Indeed,
we can start from the following ds2, which is due to Weyl (1919) and
Trefftz (1922) [12]:
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,
                                                                                                            (A1)
and then proceed as in sect. 1.

Remark that if α = 0, eq. (A1) gives the ds2 of De Sitter’s model
(1917). –

LEGENDA concerning the following diagrams; putting x := R/α, and
y := [dR/(dct)]2, (eq. 2) can be rewritten as follows:

The six figures give diagrams of y(x) for the following values of |A|: 2/3;
0.5; 10−1; 10−3; 10−6; 0. (Fig. 6 gives y(x) for light-rays, A = 0).

Fig. 1 – Diagram of y(x) = [(x − 1)/x]2 [1 − (2/3) ∗ (x − 1)/x] for some values of x;
(9/8) ≤ x < +∞; max(+∞, 1/3); [y(9/8)]1/2 = 0.106917.

Fig. 2 – Diagram of y(x) = [(x − 1)/x]2[1 − 0.5 ∗ (x − 1)/x] for some values of x;
(9/8) ≤ x < +∞; max(+∞; 0.5); [y(9/8)]1/2 = 0.107981.
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Fig. 3 – Diagram of y(x) = [(x − 1)/x]2[1 − 10−1
∗ (x − 1)/x] for some values of x;

(9/8) ≤ x < +∞; max(+∞; 0.9); [y(9/8)]1/2 = 0.110492.

Fig. 4 – Diagram of y(x) = [(x − 1)/x]2 [1 − 10−3
∗ (x − 1)/x] for some values of x;

(9/8) ≤ x < +∞; max(+∞; 1 − 10−3); [y(9/8)]1/2 = 0.111105.

Fig. 5 – Diagram of y(x) = [(x − 1)/x]2 [1 − 10−6
∗ (x − 1)/x] for some values of x;

(9/8) ≤ x < +∞; max(+∞; 1 − 10−6); [y(9/8)]1/2 = 0.111111.
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Fig. 6 – Diagram of y(x) = [(x − 1)/x]2 for some values of x;
(9/8) ≤ x < +∞; max(+∞; 1.0); [y(9/8)]1/2 = 1/9.
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