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SUNTO. – In questo lavoro verrà discussa la modellazione matematico-numerica della
fluido-dinamica del sangue in carotidi aterosclerotiche. Verranno richiamati i concetti
di base per la ricostruzione delle geometrie computazionali, la modellazione matemati-
ca del problema di interazione-fluido struttura e una possibile strategia per la sua riso-
luzione numerica. Verranno inoltre presentati alcuni risultati numerici ottenuti per un
caso sia prima che dopo la rimozione chirurgica della placca.

***
ABSTRACT. – In this work we present the mathematical and numerical modeling of
blood fluid-dynamics in atherosclerotic carotids. We review how to obtain the compu-
tational domain, the mathematical formulation of the fluid-structure interaction prob-
lem, and a possible strategy for its numerical discretization. We also report some
numerical results for a case both before and after the surgical removal of the plaque.

1.  INTRODUCTION

Atherosclerosis is the leading cause of death in Western countries
and consists in the formation of atherosclerotic plaques in arteries of
medium or large size, with possible obstruction of the vessel and forma-
tion of blood clots [18]. Under normal conditions, this process is a pro-
tective response of the endothelium and muscle cells of the artery to
stress, and consists in the formation of fibrous lesions. When this
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response becomes excessive as a result of prolonged and high fluid vis-
cous stresses, a matrix of connective tissue grows up and lipids begin to
accumulate. This accumulation can lead to the formation of a plaque,
that obstructs the vessel (stenosis), reducing its lumen, and could degen-
erate leading to a complete obstruction of the vessel and to a stroke.

The plaque may be calcified, fibrous or lipid, depending on its
composition, and mostly develops at the bifurcation sites, such as the
carotid one. The carotids are two arteries located at the level of the
neck and are crucial to maintain the human life, since they supply the
blood to the brain. In the case of a lipid plaque in the carotids, the thin
fibrous cap may crumble inducing embolization of fragments into the
brain tissue.

The mechanisms of formation and progression of the atherosclerot-
ic plaque are related to several factors, such as vessel morphology and
vascular cell biology, interacting with each other. In particular, the blood
fluid-dynamics seems to play a crucial role in the plaque development.
Indeed, it has been extensively shown in the last thirty years that when
vascular endothelial cells are subjected to stress, they change their polyg-
onal shape and become elongated in the direction of the blood flow. A
number of molecular and biological changes are mediated by shear stress
exposure of endothelial cells, including changes in gene expression, pro-
duction of vaso-active compound, adhesion molecules and changes in
cell cytoskeleton. As a result of this biological response to flow, the intact
endothelium is able to initiate a cascade of events leading to the thicken-
ing of the arterial wall and to plaque formation in regions of low and
oscillating wall shear stress (WSS), whereas areas of vessel wall character-
ized by uniformly directed and laminar WSS are spared from develop-
ment of vascular disease [11]. All these phenomena, induced by the
blood fluid-dynamics, are highly correlated to the formation and progres-
sion of the plaque, and should be considered in the study of these clinical
conditions, not only in general terms but at patient-specific level.

The mathematical and numerical modeling is nowadays a valu-
able tool for the study and the understanding of many physical phe-
nomena. In particular, the use of numerical approximations of the
equations describing these phenomena is a synergistic instrument (in
some cases even alternative) to experimental studies. There are many
areas in which the numerical modeling significantly supports the under-
standing of physical phenomena and the industrial design, such as aero-
dynamics, shipbuilding, geo-science, structural mechanics, electronics
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and, most recently, the biomedical environment. In the context of
patient-specific numerical simulations for the study of the cardiovascu-
lar system, the research has been active for at least twenty years, see,
e.g., [15]. In addition, the opportunities given by modern computers
and high performance computing allow to achieve meaningful patient-
specific results in a reasonable time. This has been also possible thanks
to the great advances in recent years of the techniques to obtain bio-
medical data and imaging and the related techniques to reconstruct
geometries and process data, which are a necessary starting point in
view of the numerical studies.

In this work, we present the numerical solution of blood flow in
carotids. To this aim we consider the fluid-structure interaction prob-
lem due to the compliant nature of the carotid vessel wall and its
numerical discretization. In particular, we address the case of stenotic
carotids, so that we need to introduce a suitable model for the plaque.
We present some numerical results obtained in realistic geometries and
with patient-specific boundary conditions, both before and after the
plaque removal.

2.  GENERATION OF THE COMPUTATIONAL DOMAINS

The equations that describe blood flow in a compliant vessel (see
Cap. 3 for their formalization) should be numerically solved in a realis-
tic computational domain. This is mandatory to obtain significant
results from a clinical perspective. To do this, the following steps
should be performed: i) reconstruction of the lumen geometry, ii) defla-
tion of the domain, iii) generation of the vessel wall domain, and iv) gen-
eration of the computational meshes.

Reconstruction of the lumen geometry. The reconstruction of the
lumen geometry provides a first guess of the domain where the fluid
problem will be solved. To do this, a standard procedure is based on
the segmentation of medical images based on Magnetic Resonance
Imaging (MRI) or Computed Tomography (CT) technology. Since these
images are often affected by noise, an imaging enhancement is usually
performed at the beginning of the procedure [19, 16, 6]. Then, image
segmentation starts. This consists in the construction of the shape of the
vascular district, by detecting those points which (presumably) belong
to the boundary of the vessel lumen (i.e. to the interface with the vessel
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wall). Typically, a thresholding technique is used, where a threshold k is
selcted to identify the points whose intensity in grey-scale is larger than
k. This is motivated by the assumption that the vessel lumen is charac-
terized by intensity values larger than the background [1]. More sophis-
ticated class of segmentation methods are front propagation methods,
where the propagation of a suitable wavefront is tracked, based on
noticing that the speed of the wave is small in regions where the image
intensity changes rapidly, so that the wavefront is supposed to slow
down when approaching the boundary [22]. See [17] for a review of
other methods. In Fig. 1, an example of final reconstruction of an
ascending aorta is provided.

Fig. 1 – Example of segmentation of the lumen boundary of an ascending aorta.
Courtesy of E. Faggiano.

In this work, we consider MRI images of the carotid of a patient
who underwent to carotid endarterectomy (TEA) (i.e. the surgical plaque
removal) both before (i.e. in the stenotic case) and after (i.e. without
plaque) TEA. These data have been provided by the Ospedale Maggiore
Policlinico di Milano. The segmentation of such geometries has been per-
formed with the open source software VMTK (www.vmtk.org).

Deflation of the computational domain. In this work, we consider
a non-linear elastic material (see Cap. 3), so that we could not ignore
the non-null diastolic blood pressure which characterizes a radiological
image. This means that the geometry we have reconstructed, corre-
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sponds to an internal pressure of about 70mmHg. To account for this,
here we use the strategy introduced in [12, 3]. In particular, the idea is
to recover the zero-stress geometry (that is the one would have without
the blood inside the lumen) by suitably deflating the diastolic one. This
is obtained by introducing an inverse problem that has been solved by
means of fixed point iterations (see [12] for more details). In Fig. 2 the
deflation of a carotid domain is shown.

Fig. 2 – Deflation of a carotid.
In blue the original segmentation, in grey the geometry after the deflation.

Generation of the structure domain. The vessel wall is not
detectable from standard radiological images. Instead, the lumen where
blood flows and the plaque could be identified. Once the lumen geom-
etry has been reconstructed (see previous point), the region occupied
by the plaque is reconstructed as well (see Fig. 3, left). Thus, the vessel
wall domain was obtained by extrusion, from the surface delimiting the
lumen/plaque reconstruction, with a total wall thickness equal to 20%
of the local vessel radius, intended as the sum of the lumen and plaque
transversal distance from the center [4], see Fig. 3, left.

Generation of the computational meshes. Once the three geometries
characterizing the different part of a carotid (the lumen where blood
flow, the plaque, and the vessel wall) have been reconstructed, the inter-
nal volume of these regions were discretized using tetrahedral elements.

In Fig. 3, middle and right, we report the computational meshes
of the lumen vessel after deflation considered in this work, both before
and after TEA.
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Fig. 3 – Left. Reconstruction of the lumen/plaque/vessel wall geometry.
In green, the plaque; in red, the vessel wall obtained by extrusion.

Middle and right. Computational meshes for the fluid problem before the plaque
removal (stenotic case) and after the plaque removal, respectively.

3.  MATHEMATICAL AND NUMERICAL MODELING

3.1 Mathematical modeling

As highlighted in the Introduction, blood flows in compliant ves-
sels. From a mathematical point of view, this can be described by a
fluid-structure interaction (FSI) problem.

Well accepted hypotheses for blood are incompressibility and
homogeneity. Moreover, its rheology could be considered Newtonian
for medium and large vessels such as carotids [15]. The deformation of
the vessel wall is mathematically described by the elastodynamics equa-
tion. It is often assumed a non-linear finite elastic law which relates the
stress tensor to the strain, and a nearly incompressible behavior [10].

The fluid problem is usually written in an Eulerian framework,
whereas the vessel wall problem in a Lagrangian configuration. Given
a function g defined in the current configuration Ωt, we denote by
ĝ = g ◦ L the function in the reference configuration Ω, L being the
Lagrangian map. Moreover, F = ∇x is the deformation tensor and
J = det(F) represents the change of volume between the reference and
the current configuration. The stress tensor in the reference configura-
tion (First Piola-Kirchhoff stress tensor) is mapped into the current con-
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figuration (Cauchy stress tensor), as follows: T̂s = JTsF –T. The common
boundary between the two regions is the fluid-solid (FS) interface Σt,
which coincides with the physical lumen boundary and the internal ves-
sel wall/plaque boundary, see Fig. 4, left.

Thus, the FSI problem at each time reads as follows:

where v is the blood velocity, p the blood pressure, Tf = 1/2µ (∇u + ∇uT)
−pI the Cauchy fluid stress tensor, µ the blood viscosity, d the vessel wall
displacement, and df the fluid domain displacement; ρf and ρs denote the
fluid and vessel wall densities. T̂s (η̂ŝ) is the first Piola-Kirchhoff tensor
for a nearly incompressible exponential material, that is

where κ is the bulk modulus, G the shear modulus, and γ regulates the
exponential behaviour. For small deformations this material behaves as a
linear structure. In order to accout for the plaque, we will consider differ-
ent values of κ and G in the region of the vessel wall and in that of the
plaque, accounting for the increased stiffness in the latter, see Fig. 4, right.

Fig. 4 – Left. Fluid and structure domains.
Right. schematic representation of the different computational domains depicted

through a section.
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In the coupled problem above, together with the Navier-Stokes
equations (1a)-(1b) and the elastodynamics equation (1e), three inter-
face coupling conditions are identified: the kinematic condition (1c)
stating a no-slip assumption between fluid and structure particles; the
dynamic condition (1d) expressing the action-reaction principle (III
Newton law); and the geometric condition (1f) enforcing the perfect
adherence between fluid and structure domains.

Problem (1) should be completed with suitable initial condition
for v, dand d�

·
, and boundary conditions. For the structure, here we con-

sider homogeneous Dirichlet and Neumann conditions at the artificial
sections in the normal and tangential directions, respectively, and a
Robin condition with coefficient αe to account for the presence of the
surrounding tissue at the external surface [17]. For the fluid problem,
we prescribe a flow rate at the inlet and an absorbing resistance condi-
tion at the outlet [14].

3.2 Numerical approximation

For the numerical solution of the FSI problem (1), segregated
algorithms are here considered, where the solution of the fluid and
structure problems are solved separately in an iterative way.

After time discretization (BDF1 for the fluid and mid-point
scheme for the structure), the fluid problem is linearized by means of a
semi-implicit approach, where the convective term and the fluid
domain are extrapolated from previous time steps. This choice intro-
duces a (mild) CFL-like restriction on the time step ∆t to preserve
absolute stability. We indicate with * extrapolated quantities. Given
σf ≠ σs, a general segregated algorithm reads as follows:

For n ≥ 1, k ≥ 1, at time step tn/iteration k, until convergence or
k = kmax,

1. solve the Oseen problem with a Robin condition at the FS
interface:

2. then, solve the non-linear vessel wall problem with another
Robin condition at the FS interface:
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where vf = df and the terms g account for the quantities at previous time
steps. For the choice of the interface parameters σf and σs, several choic-
es have been proposed to obtain fast convergence, see e.g. [2, 7, 8, 21].

At each iteration the fluid problem is solved in a (known) moving
domain Ω*f. This corresponds to an explicit treatment of the geometric
interface condition (1f). This choice produces stable results in hemody-
namics, due to the restrained wall displacements [5]. For its solution,
we consider the Arbitrary Lagrangian-Eulerian configuration, i.e. we
write the fluid equations in a framework moving with the fluid domain
[9]. For the reconstruction of the latter, an harmonic extension of the
geometric interface condition is adopted. On the other side, the vessel
wall problem is linearized by means of the Newton method.

4.  NUMERICAL RESULTS

We present here some numerical results obtained in the two
geometries described above, namely the carotid of a patient before and
after the removal of the atherosclerotic plaque. These numerical results
were obtained using the Finite Elements library LifeV (www.lifev.org),
P1 − Bubble/P1 Finite Elements for the fluid problem and P1 Finite
Elements for the vessel wall/plaque problem; the backward Euler
scheme and the midpoint method have been used for the time dis-
cretization of the fluid and vessel wall/plaque problems, respectively.
The implicit Robin-Robin partitioned scheme has been used for the
solution of the FSI problem. For the choice of the interface parameters
σf and σs, we used the values proposed in [2, 13], which guarantee
excellent convergence properties.

We also set ρf = 1.0, g/cm3, ρs = 1.1 g/cm3, µ = 0.035 cm2/s For the
healthy vessel wall, we set κ = 107 dyne/cm2, G = 1.034 · 106 dyne/cm2

(corresponding for small displacements to E = 3 · 106 dyne/cm2 and ν =
0.45), γ = 1, whereas for the plaque κ = 6.67 · 107 dyne/cm2, G = 6.897
· 106 dyne/cm2 (corresponding for small displacements to E = 2 · 107

dyne/cm2 and ν = 0.45), γ = 1. The time discretization parameter was ∆t
= 0.002 s.
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In Fig. 5, left, we show the flow rate prescribed at the inlet and
obtained by means of Echo-Doppler measurements at Ospedale
Maggiore Policlinico di Milano. This datum has been prescribed by
means of a Dirichlet condition obtained by selecting a parabolic profile
for the velocity. At the outlet, a resistance condition to avoid spurious
reflections has been prescribed, see [14]. In Fig. 5, middle, the comput-
ed pressures at the level of the bifurcation has been reported both
before and after the plaque removal. From this comparison, we observe
the reduced pressure obtained after the removal of the plaque, in accor-
dance with the clinical evidences. In Fig. 5, right, the computed blood
velocity streamlines together with the vessel wall/plaque displacements
(in arrows) at the systolic peak have been reported.

Fig. 5 – Left. flow rate prescribed at the inlet obtained by means of Echo-Doppler
measurements; Middle. Computed pressure at the level of the bifurcation;

Right. Computed blood velocity stream-lines and vessel wall/plaque displacements
at the systole.

Fig. 6 – Cyclic strain before (left) and after (right) the plaque removal.

In Fig. 6, we report the cyclic strain in the vessel wall/plaque
domain both before and after the plaque removal. This quantity is
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defined for each point as (Vsyst − Vdiast)/ Vsyst, where Vsyst and Vdiast are the
systolic and diastolic Von Mises stress [20]. This quantity seems to be
correlated with high values of the permeability of the wall which should
favour the plaque development. We observe the decrease of the cyclic
strain after the plaque removal.
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