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SuNTO. — Questa nota tratta il comportamento per tempi lunghi della soluzione
dell'equazione di Boltzmann omogenea per molecole maxwelliane, nel caso che il dato
iniziale appartenga ad un opportuno intorno dell'equilibrio. In particolare, questo la-
voro contiene una quantificazione del tasso esponenziale di convergenza, ottenuto per
mezzo di una deduzione elementare.

ABSTRACT. — This note deals with the long-time behavior of the solution to the spatially
homogeneous Boltzmann equation for Maxwellian molecules, when the initial datum
belongs to a suitable neighborhood of the Maxwellian equilibrium. In particular, it
contains a quantification of the rate of exponential convergence, obtained by simple
arguments.

1. INTRODUCTION AND MAIN RESULT

This note deals with the convergence of the solution of the Boltz-
mann equation to the Maxwellian equilibrium, as time goes to infinity.
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More specifically, it aims at providing a quick, homogeneous and de-
tailed proof that initial data belonging to a suitable neighborhood of the
equilibrium produce solutions that remain in a slightly greater neigh-
borhood, and converge exponentially fast. There is a large number of
works about this kind of problems and the results contained in this note
have been already formulated, more or less explicitly, in previous stud-
ies, where partial proofs have also been provided. On the one hand,
a lot of effort has gone into proving that convergence to equilibrium
takes place exponentially fast in time, under minimal conditions on the
initial datum. See [1, 2, 6, 8, 16] and the references therein. However,
the mathematics needed to prove these last statements is generally quite
complex. On the other hand, it is desirable to have also simple proofs
of the asymptotic behavior even under the restrictive conditions men-
tioned at the beginning. From an historical point of view, the problem
has been pointed out on page 345 of [14]. Its usefulness has recently
emerged, for example, in the proof of Theorem 1.2 in [7].

1.1 The equation

The equation under study in the present work is the homzogeneous
Boltzmann equation for Maxwellian molecules, which is concerned with
a spatially homogeneous dilute gas composed of a very large number
of like particles. See [3, 17, 18] for an exhaustive and detailed treat-
ment of the well-known Boltzmann model. The locution “Maxwellian
molecules' means that each collision is influenced by a repulsive force
proportional to 75, r being the distance between two colliding parti-
cles, a very particular situation which was studied for the first time in
[13]. In case of absence of external forces, the equation reads

d
a (Vvt) :Qb[f(vt)af(vt)](v) (1)
with (v,) in R3 x (0, +00). A solution of (1), f(-,), is required to be a
probability density function (pdf) in the first variable, at each instant ¢.
The collision operator Qy is defined for every pair (¢, 1) of real-valued
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functions in L!(R3) through the relation

W=V

kel = [ [letvutn) - w(V)w(W)]b(

R3 §2

. w) ugz (dw)dw
lw —v|

)
where ug2 stands for the uniform probability measure on the unit sphere
5?2, embedded in R3. Moreover, the post-collisional velocities v, and w
must obey the conservation of momentum and kinetic energy, that is

VW= Vi + Wy and V2 + [w|? = |[vi? + |[ws|?

and, consequently, can be parametrized by unit vectors w in S$? accord-
ing to
Vi =V + [(w—v) ww
Wi =w — [(W—v) ww

3)

where - denotes the standard scalar product. The [0, +00)-valued func-
tion b -- the so-called Maxwellian collision kernel -- is defined on (—1, 1)
and carries the information about any single collision at a microscopic
level. This function satisfies, for all z in (—1, 1), the symmetry condition

b(x) =b(v1— 1:2)\/1|x|7x2 = b(—x) 4)

and the so-called Grad angular cutoff, here written as

1
/b(a:)d:c =1. )
0

See Section 3 in Chapter 2A of [18] for further information about
collision kernels.

Existence and uniqueness for solutions of (1) are well-understood
questions, at least when (4)-(5) hold. More precisely, in [15] it is proved
that, given a pdf fy as initial datum, the resulting Cauchy problem ad-
mits a unique solution f(-,t). Another question of some relevance for
its mathematical and physical implications is that there exist non trivial
stationary solutions of (1), that can be seen as the possible equilibrium
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distributions. Within the class of all pdf's on R3, these stationary solu-
tions are exactly the Maxwellzan pdf's, i.e.

2mo?

3/2 . ;
Mao¥)i= (s ) expl(=gpalv— vl

where (vo, ) varies in R3 x (0, +00). See comments about Theorem 1.2

in [7]. Relevant properties, from a physical point of view, are collected
in Chapter VIII of [17].

1.2 Approach to equilibrium based on the linearization of the collision operator

The most important problem connected with the long-time behav-
ior of the solutions of (1) is the quantification of the rate of convergence.
From a historical point of view, the first technique introduced to pur-
sue this goal was based on a linearization of the non-linear equation (1)
and on the spectral analysis of the resulting linearized collision operator.
The pioneering study explaining this line of reasoning is [10], but met
with little success. Indeed, it required too restrictive conditions on fj
in order to obtain a quantification of the desired convergence which, in
any case, was plainly improvable. This is the main reason for the intro-
duction of alternative techniques. A remarkable exception is the recent
work [16], in which the linearization technique has been reappraised
and improved to obtain a definitive result on the rapidity of conver-
gence to equilibrium of the solution of the spatially homogeneous Boltz-
mann equation with hard potentials, which, however, does not include
the present Maxwellian case.

It is worth providing here a self-contained treatment of the lin-
earization procedure, a subject which is still scattered, sometimes with
discordant notation, in different sources. See, for example, [8, 9].

It will be assumed that the initial datum fj satisfies

/vfg(v)dv—O and /|v|2f0(v)dv—3. ©)
]R3

R3



MAXWELLIAN MOLECULES 227

From conservation of momentum and kinetic energy, namely

/ V(v Ddy = / vfo(v)dv

RS RS
/ VRF(v,)dv = / V2 fo(v)dv
R3 R3

for every t in [0, +00), it follows that (6) can be assumed without any
loss of generality. Moreover, under (6), the above conservations are pre-
served in the limit and the relative Maxwellian equilibrium turns out to
be My 1, which will be simply indicated with M.

A central role will be played throughout this work by the so-called
linearized collision operator Ly defined by

Lylh](v) :(//Mwnmw+m%»—mw—mww

R3 S2
X b (H -w> uge (dw)dw .

The introduction of L; can be justified as follows: After the sub-
stitution f(v,t) = M(v)(1 + h(v,t)), equation (1) changes into a new
equation for h, namely

9 hw,t) = Lfh(. D)) + BfaC0,0C0l) )
with Ry, defined by
Rale, 01(4) = g7 QMo MUI() ®

At this stage, the function h can be thought of as a sort of “remain-
der'", which becomes smaller and smaller when ¢ increases. Therefore,
if the contribution of the quadratic operator R}, in (7) becomes negli-
gible with respect to that given by L, then the spectral properties of
Ly, could provide a quantitative information about the rapidity of con-
vergence of h to the null function. This insight, which may lead to the
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desired conclusion of quantifying the convergence to equilibrium, ac-
tually sums up the very content of this note and will be formalized in
a rigorous way in the sequel. Moreover, it is crucial to point out that
this strategy works only under some restrictions on fo, to be specified
as well. As to the mentioned spectral analysis of L, it can be a very
difficult task if based on the natural domain of L;, namely the space of

functions h : R? — R which can be written as % — 1, when f is any

pdf on R3. A remarkable idea in [10] consists in the introduction of the
Hilbert space H := L2(R?, M (x)dx) as a new domain for Ly, a device
to makes computations feasible, since there is a Fourier basis for H that
diagonalizes L;. To complete the necessary notation, introduce (-, ).
and || - ||« to denote the scalar product and the norm of H, respectively,
and Ns := {h € H| || k]|« <} toindicate the ball of radius ¢ centered
at the origin. The kernel of L;, coincides with the five-dimensional linear
subspace span{1, vy, va, v3, |v|?} generated by the collisional invariants.
Ho will indicate the orthogonal complement in H of the kernel of Ly.
Since

/ vi(v, dy = / VM (v)dy

Rd RZS
/ V2F (v, t)dv = / [v[2M (v)dv
R3 R3

for every ¢ in [0, +00), it follows that if h(-,t) belongs to H then it is in
the subspace Hg for all . On the new domain, the linear operator L,
is self-adjoint and negative with a discrete set of eigenvalues, the least
negative of which, Ay, represents the spectral gap. A precise analysis is
contained in [5], where it is also shown that

1
Ay = —2/3@2(1 — 22)b(z)dx
0

and, for every ¢ in H,,

(Lolel @), < Ms [0l - 9)
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This spectral gap has been considered as a reference value for the
rate of exponential convergence of f(+,t) to M in the original equation,
but this claim held out long as an unproved conjecture. The difficult
point consists in the fact that the spectral properties of L;, viewed as
an operator on H, are not directly connected with the properties of the
solution of the non-linear equation (1), where it would be more natural
to consider the L! distance. In point of fact, a definitive result has been
recently obtained in [6], but the proof is quite long and complex. With
a view to simplified, but rigorous, treatments of the subject one is led
to renounce the pursuit of optimal rates in exchange for significant sim-
plifications of the mathematical proof. The following result just goes in
this direction.

Theorem 1.1. Let (4)-(5) be in force and let § := |Ay|/16. If
fO() - M() c N(S ,

() 1o
ther F1) — M()
W € Nys (11)

holds true for all times t > 0. Moreover, under (10),

Hﬂw—Mmm:/umw—Mm@zgaéw (12)
RS

is valid with

1 2\ 2
oo 2"
(Hh(-,O)II* Ay

With reference to the main motivation for the present note explained
at the beginning, it is worth indicating how Theorem 1.1 is applied in the
proof of Theorem 2.1 of [7]. The problem that one must tackle therein
reduces to the case in which fo(v) = ]2, go, (vi), where go(z) =
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\/; exp{—552%} and 327 02 = 3. Indeed,

2 1 1
3

1
* 02\/2—0203\/2—03 [01\/2—0’1 ]
1

03\/2—03 [02\/2 1]

1
4+ 3| —F—=-1
o3 2—0%

whence condition (10) plainly follows provided that

2 2
o2 c 1_\/42+551+\/42+6
¢ 21+ 62 7 21 + 62

Hfo(') - M()

fori=1,2,3.

2. PROOF OF THE THEOREM

The proof is split into two subsections: The former contains a
discussion about the validity of condition (11), the latter includes the
proof of (12).

2.1 Existence and uniqueness near the equilibrium

Here the validity of (11) is derived the study of equation (7). Exis-
tence and uniqueness are tackled according to an approach rather differ-
ent from the classical one presented in [15], which requires new proofs.
Following [4], after fixing the initial datum hg in H, the solution of the
Cauchy problem, resulting from (7) and this initial condition, is meant
as an element of C([0,00); Ho) N CL([0, 00); Ho).

To start, let .7t denote the semigroup of linear operators on H
sending an element g onto the solution .7![g] of the evolution equation
2nh(v,t) = Ly[h(-, 1)](v). It is well known that 7* admits a charac-
terization in the form of exponential semigroup exp{tLy}. The basic
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properties of Ly, collected, for example, in [5], guarantee that .7 ¢[g] is
actually an element of Hy whenever g is in the same space. Following
general references on abstract differential equations like [11, 12], one
obtains that the solution of (7) admits the representation

hv,t) = yf[ho](v)+/ytS[Rb[h(-,s),h(-,s)]](v)ds (13)
0

which lends itself to be interpreted as a fixed point problem.

Now, a first preliminary fact, which follows from (9), is that
17 g] 1]« < ™ gl (14)

for every g in Ho and all ¢ in [0, +00). Another preliminary fact is en-
compassed in the inequality

[(Rolo, ¥],p)«l < 2([@llsl[2]lll ]l (15)
which is valid for every ¢, 1 and p in H. A direct consequence of (15) is
1 R[0, 1« < 2[ ][]l ]l - (16)

To prove (15), it can be observed that the quantity

(Rolio, ], p)s = / p(V)Qu[ M, M) (v)dv

J
= [ [ [ oetvutwnrnnes (225w ) us(dw)dvdw

R3 R? §2
[ [ [ o (220w s oy
R3 R? §2

(17)
is decomposed as difference of two terms. The former, which reads

PN g ()|

R3 R3 S2 ‘W - V|

W —V

: w)} ugz (dw)dvdw |
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can be bounded from above, by means of the Cauchy-Schwarz inequal-
ity, by

W=V

L/ / / pQ(V)M(V*)M(w*)b< ‘w) usz(dw)dvdw:| " y
2

[w—vl

W=V

[w = vl

x L/ / / <p2(v*)w2(w*)M(v*)M(w*)b< -w) usz(dw)dvdw} 1/2.
s s

Since M (v.)M(w.) = M(v)M(w) and [g, b(u - w)ugz(dw) = 1 for
every u in S?, it follows that

L/// (w)b (Hw> usz(dw)dvd\v] 1/2:||p|*

3 R3 S2

Moreover, since (v,w) > (Vi, W) is a linear isometry of RS for
every w in S? and

b L,iv‘w =b Wee 7 Vs cw |,
lw — v W — Vi

the change-of-variable theorem yields

W=V
[w =]

L///W2(V*)¢2(W*)M(V*)M(w*)b< w> usz(dw)dVdW] 1/2
3 R3 §2

= Mlelllle

which is the desired bound for the former term under discussion. Then,
since fSQ U - w)ug2(dw) = 1 for every u in S?, the latter term in (17)
is equal to

/M v)dv - /M (V)dv = (¢, p)s - (1, 1)«

and the Cauchy-Schwarz inequality gives |(¢, p)« - (¥, 1)] < || @ |]4]|
U |l«|| p||«. The proof of (15) follows from the combination of the up-
per bounds just obtained.
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After these preliminaries, existence and uniqueness will be proved
via a contraction mapping principle, as in [4]. The first step consists
in the definition, for 7' > 0, of the Banach space X := C([0,T]; Ho)
endowed with the norm

=[] == sup [[z()]« -
te[0,7)

Then, the formula
Zylz) := Tho] + / T Ry[x(s), 2(s)]]ds
0

defines an operator on X. Indeed both h¢ and z(s) belong to Hg and,
consequently, Ry[z(s), x(s)] and
TY[Rp[x(s), x(s)]] are again elements of H, for every s, win [0, T]. Af-
ter setting D := {x € X | |||=]|| < |As|/8}, which is obviously a closed
subset of X, it can be proved that Z,(D) C D and that

1
11 Zo]] = Zo [yl < 5 [l = wlli (18)

for every 2 and y in D, provided that kg belongs to N5 with § = |A|/16.
The proof of the first claim is based on (14) and (16), which give

t
NZEI < sup [||ho||*e““+ [ I Rfa(). 2t ds
t€[0,T]
0
t
< et a2 ds

[hol[« +2 sup
te[O,T]O

In view of the bound on hg and the fact that x is in D, the claim
is proved by means of the inequality

1 1 1
Z < — — —|As] .
[ Zp[] ] TV 31|

1
A 2—|Ay|?
< 16| b + 64| b|
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To verify (18), inequalities (14) and (16) can be used again to write

t

126 -2l < sup / M) || Ryfa(s), 2(s)] — Ro[y(s), y(s)] ||« ds
= swp / M) || Ryfa(s) + y(s), 2(s) — y(s)] || ds
te[o,T]0
< sup 2 / e (| 2(s) + y(s) || - ||z(s) — y(s) ||« ds

te[0,T] A

1 1
< 25 |Ap|l— — .
< 2l llle =l

Existence and uniqueness of the solution of (7) are now direct
consequences of Theorem 1.1 in Chapter IV of [12], and this solution
can be viewed as a map from [0, 7] into H. Finally, since the above ar-
gument is independent of the choice of T', the solution can be extended
to [0, +00) and this proves the first part of Theorem 1.1. Indeed, the va-
lidity of (11) is nothing but the translation of the fact that the fixed point
problem represented by (13) admits a unique solution in D, rewritten,
through the equation f(-,¢) = M(-)(1 4 h(-,t)), in terms of f(-, ).

2.2 Rapidity of convergence to equilibrium

This section contains the proof of (12). Starting from f(v,t) =
M (v)(1 + h(v,t)), the Jensen inequality entails

2 (f(v,t) — M(v))? 2.
[ f(v,t) = Mv)|]] < / M) dv = [[h(-, ) []5 =:0(t) .
R3
(19)
Taking the scalar product (-, -)« of both members of (7) with the
solution h(-, t) of the same equation yields

%(h(v, £),h(v,1)). = (Lo[b(, )], h(v, 1)) . + (Ro[B (), B, )], h(v, 1)) . .

Since h(-,t) belongs to Hy for every ¢ > 0, (9) and (15) lead to

jt@(t) < ApB(t) + 2[0(1))%/2 .
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After setting 9(t) := 0(t)e~™!, the above inequality becomes

iﬁ(t) < ()3 2e Mot = 2 (£)]3/ 2z Mt .

Whence,

L [W% - %1 - / [9(r)] 520 (r)dr < 2 / HhTdr < <—4Ab)

and, after some elementary algebra,

-2

9(t)

1 2

= [‘/79(0)+Ab
1 2172

- [Hh(-,om**AJ = 20

Note that (11) guarantees that C, is a well-defined, strictly positive
real constant. Combination of (20) with the definition of ¥ gives 0(t) <
C.eMvt which is the desired conclusion.
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