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ON THE EXISTENCE OF THE UCP-BASIS
IN COMPLEX SEPARABLE INFINITE
DIMENSIONAL BANACH SPACES
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SUNTO. — Estensione al caso complesso dei sistemi biortogonali generanti e discussione
della possibile estensione della UCP-base al caso complesso.

ABSTRACT. — Extension to the complex case of the generating biorthogonal systems
and discussion on the possible extsnsion of the UCP-basis to the complex case.

1. INTRODUCTION

In [2] (see also [3] for a better proof), by means of a direct con-
struction, I proved the existence of the UCP-basis in every separable
infinite dimensional real Banach Space.
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Aim of this paper is to sum up the situation for what concerns the
possible existence of the UCP-Basis also in every infinite dimensional
separable complex Banach space.

Let us recall the necessary definitions:

A real Banach space X is a real linear space endowed with a norm
||..|], which is a real non negative function on X which imitates the "ab-
solute value" for the real numbers, hence such that, for any x € X and
yeX,||lz|]|=0onlyifz = (the null vector), ||z + y|| < ||z|| + ||y]]
and ||\z|| = |\|.||z|| for any real number \; in partlcular in this topology
X is "complete" (in the sense that every "Cauchy sequence" (z,,)22 ; of
X (foreache > 0 there exists a positive integer n. so that ||z, — 2., || < €
for each n > n. and m > n.) converges to an element of X). If the
numbers A of above can be also complex, we have a complex Banach
space.

Let now (2, 2)5° ; be a biorthogonal system of a (real or com-
plex) Banach space X (thatis (,)$°; C X and (2})°; C X*-the dual
space- with z* (xn) = Om,n Kronecker indices for each m and n), we
say that (a:n)n 1 Is a:

(i) basis with fixed brackets of X if there exists an increasing sequence
(p(m))2°_; of positive integers such that, setting p(0) = 0, we have the
following representation for each 7 of X,

=> | D @, (1)

if p(m) = m for each m, we have the Schauder basis of X;

(ii) basis with uniformly controlled permutations (UCP-basis) of X if
there exists an increasing sequence (p(m))S°_; of positive integers such
that, for each T of X, there exists a permutation (7(n))5°; of (n)>2
(which depends on 7) so that

Z ﬂ(n n)s (2)

in particular these permutations cannot be quite arbitrary, because it is
also

n=1

(n)pey C (f(n))ﬁ(:n;) C(n )p(m+1 for each m. (3)
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We point out that the basis with fixed brackets (hence also the Schauder
basis) in general does not exist ([1], Enflo 1973); hence the best kind of
basis at our disposal in real case is just the UCP-basis; whereas the ques-
tion of the existence of the UCP-basis also in complex case is still open.
Therefore in section 2 we will extend to the complex case the "generat-
ing biorthogonal systems" which are, for the construction of UCP-basis,
the most important key which allows the approximations of the element
Z by means of finite subsums of the series Y | % (T)xy,.

Section 3 concers the general situation of the extension of the UCP-
basis to the complex case, from the point of view of both the direct ex-
tension and the passage through the real associated space.

2. THE ASSOCIATED GENERATING BIORTHOGONAL SYSTEM

2.1 The associated generating biorthogonal system in the real case

. . P .
Given a biorthogonal system (up,u}),—; of X, we call generating
. . WP .
biorthogonal system associated to (uy, u},),,_; another biorthogonal sys-

tem (wy, w;;)f;:l with all the properties which appear in the following
theorem (for the proof see [2] p.22-34), which provides the procedure
of the passage to the generating form in the real case.

Theorem 1 (GENERATING BIORTHOGONAL SYSTEM
THEOREM (GBST))
Let (un, ul), _, be biorthogonal in X with

|unll = 1and |juy|| < K for1 <n < P (4)

(hence K > 1). Fix two positive integers M' and Q. I use, for each
positive number a and for each positive integers q and m, the following
notations:

EX[a,1,q] = a%% EX [a,m +1,q]

)
= EX [a, 17 EX [(I’ m’ q]] — a/Q'EX[avqu}‘

Then let (wp, wg)izl be biorthogonal with wy = uy and, for each n with
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, Ap1 = land, foreach kwith2 <k <n, (6)

A, .= EX [2K, 92P*(P=ntl) 4 o(f _ 9), P]

(in particular
Ass = EX [21(, 92P*(P-1) P],

App =EX [2K, 22P° 4 2(k — 2), P} ).
FixT € X with |Z|| = 1 and n with 1 <71 < P — 1 such that

1

Then for Q sufficiently large (hence we precise that Q depends also on M')
there exists a sequence (g(n))'1] of positive integers, with g(m+1) < P
andn < g(n) < g(n +1) for 1 < n < 0, such that, if we fix u €
span(up)?_, with ||[a|| = 1, hence

7
U= Zﬁnun with |a,| < K for each nwith1 < n <,
-1

(8)

1
in particular with |az| > and [ay| < SN

2MP
forn+1<n<mn, forsomenwithl <n <mn;

then, setting (f(n))'_; = (9(n))*} if a5 and Wy (7t1)) (7) have the
same sign, otherwise (f(n))"_, = (g(n))n 1 z‘bere exists a sequence

(bn)"_; of numbers, with b, = 0 for n+ 1 < n <, such that

1 _
0< < SIP for 1 < n <m, moreover

3|

o 1 _ =
|w—u| < SMP where W = anwf(n).

n=1
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In pamcular from the proof it easily follows that, if @ € span(u,)™_,
with (n\'_, € (n)'_, and |@|| = 1, if (9(n ))" L is any subsequence
of (g(n))" 13 such that the sequence (W (o @) S has alz‘emaz‘e signs,

again there exists like above (f(n'))"_; C (g(n"))"Z; L and (b )n L of
numbers such that, for1 < n <7/,

1 —r
0< iz < ==, b N—T|| < —=.
W (@) oM P an_:l WWfnr) — || oM’ P

OBSERVATION 1. From (5) and (6) it follows that the num-
bers A, i, are strongly increasing when index k increases and also more
strongly increasing when index n decreases; let us show a direct conse-
quence of this fact:

(a) Letus fixmof (7) andw = 2221 @, uy, of (8) of above, suppose
moreover to be going to construct W = Z b Wi, of (9) of above,
in particular fix n with1 < n <m -1 and suppose to be concerned
with the construction of the addendum by, w (., always of (9) of above,

suppose to have already precised the previous addendum

b . .
— -+l o, which appears in the development
A1)
5n+1 Bn+1 7
.+ wy, + Uptq + ...of by qw
Af(n+1) " n Af(n+1) il n—+ n-+ f(TL"r].)

where, since A (;,41) 41 is much larger than Ay, 1) 5, it follows that

bn+1

[
y v is much larger than (

f(n+1),n+1"

(b) Since the contribution to the construction of @,u, by means
of the indices f(n”) for n” > n + 1 is negligible, in order to get @y, uy,
we can start only from by, 11w, 41); which at its turn already gives the

. . b . _
contribution ﬁun to the construction of @, u,,, where we know
n n

by (a) that =21 is very large.
y (a) Af(n+1),n ylarg
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(c) Therefore, in order to construct the addendum b W () Of W =
Shb brwy(r) of (9) of above, by, has to be such that Aflz —up +

En+1
Af(nt1),n

bn brt1 _ ( T ( brt1 ))
+ =Ty, | thatisb, = Apyp (TG — — | |
Afmyn Afmi)n 7t Aftnit)m
(d) Since \an] < K which is a fixed number, since moreover by
the end of (b) W by

. is very large, it follows that also p i is very

large (moreover the sign of b,, has to be opposite to the sign of by, y1).

Uy, = Gy U, therefore it follows that

(e) Analogousy, When we pass to the construction of @, 1un_1,

will be much larger than ﬁ,

)nf f -1

we will get that p it will

follow that W practically will "deflagrate" and so on, in a sort

of "chain reaction"

In particular we notice that, also if |u%, (Z)| > zmr whereas
uf(T) = 0for 1 < n(# n+ 1) < P, the whole thesis of the theo-
rem works; that is we can produce by means of the above procedure all

the elements of span(u,)?_, that we need.
We also notice that, by (6) and (5), if we consider b,w, =
pyi A Uk with % < 3 for some k' < n, practically for our ap-

. . ) ’ . b
proximations we can write byw, = > r_, Abink“m,k since ) 34y A"L
n, ,

becomes negligible.
For the proof of next remark see again [2] p.35-39).

Remark 2 (MODIFIED GENERATING BIORTHOGONAL SYSTEM
(MGBS))

In theorem 2 we can replace (wy, wi)E_, by means of (vn, vi)E_, where,
for each n with1 <n < P/2,

* *
Wan—1 4 Wap | Wop—1 4y
* *
Wan—1 & Wap Wopn—1 1y
V2n = W2n — D Vg, = 5 — 5 D
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where D' is an integer > o n=1llwill, Suppose that (7), (8) and (9) of
theorem 2 continue to hold. Then still there exist an integer nwithn <
n < P, (h(n))_, strictly increasing of integers and (b,)"_, of numbers
such that again we continue to have

fm—1<h@) < fm) andn <h(n) <h(n+1) foreach

~ b 2 ~
nwithl1<n<n-1,0< ———< M/Pforlgngn
vh(n)(a:) 2
and ||w — | < 5P wberew—anvh
n=1

OBSERVATION 2. Suppose that (2n — 1,2n) C (g(n))"%] of
GBST, by the proof of GBST |w3,,_; (T) | is much larger than |w3, (T) |,
moreover D' is much larger than |w3,, ; (T) |; therefore we can approx-
imate
(V51 (7) U201, 03, (7) v20) by means of

((+5) s @, (-5 ) s @ )

that is we have at disposal the element ws,, with a very strong coef-
ficient and with the sign that we need. Moreover, since the number
D \ws,, 1 (T) | is very big and the approximated element 2 w3, | (T) way,
will appear distributed in many very little portions in 1n the elements
z}, (T) xy, by means of subsums of >~ >° , x} (T) z,, we can get wa,, with

the coefficient that we need and also with the precision that we need.

2.2 The associated generating biorthogonal system in the complex case

In the complex case the procedures of GBST (theorem 1 of subsection
2.1) and of MGBS (remark 2 of subsection 2.1) to the complex case can-
not work, since the coefficients of the elements are not with the simple
choice of signs "in a large sense" (¢/™ = —1,¢®® = +1), but with the
choice of signs (¢ : 0 < § < 2m); hence a more complex procedure
is necessary. Analogously also for MGBS. there is a modification of the
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construction. See the observations 1 and 2 for the explanations of the
modifications.

In GBST and MGBS of [2] a first index m appears, in order to
use the statements of the theorem directly in the many applications that
followed in the work. Now we will omit this index.

We also point out that, in the proof of this theorem, we mainly
shed light on the ideas; we will also go into details but only apart from
the cases when they are similar to those of [2].

CONSTRUCTION (C)

In what follows M’ and Qg are the positive integers M’ and Q of
theorem 4 of subsection 2.1 of [2], while IV is another positive integer.
We start from ((tn,u}) U (en k€ )i )5, biorthogonal in X, with
lunl| = 1and |Ju}]] < K forl <n < e;‘;kH <K

forl1 <k < H,and 1 < n < P, where we have to define the integers
H,.

Then again, as in theorem 4 of subsection 2.1 of [2], we set, for
each positive number a and for each positive integers ¢
and m, EX [a,1,q] = 99 and EX[a,m + 1,q] = EX[a,1, EX]a,
m,q)] = a@FXlemd moreover Hy = EX[2K,M',P| =
(2K)Q°EX[2KM U and H, = EX [2K,nH,_1,P|for2<n <P,
we set P = anl (Hp, +1).

(A). We pass to define the integers B, i, 1, and the numbers ¢y, ;1 5.
Weset,forn =1,1 <k < Hi+lands=1,By 11 =1landpi 11 =

=L moreover, for 2 < s < k: Bijis = EX[2K,2NP*(P—k+1) 4

2N (s —2),P] and o115 = gq7; Passing to n with 2 < n < P
weset, forr = 1,1 < k < Hy+land2 < s < k, By1s =

EX [2K, oVPA(P=Sj2 (HiA)—k+1) 4 o (s—2),P| and ppp1s =
20(8/(2 (H +1) + k)); while, for 2 < r < n—1, Byg,s =
EX2K, 2NP (Pl (A0 =RED) Lo (S0 (Hy 4 1) 45— 2), P
and @ prs = 353021 (Hj+1) +8)/(0) (Hj+1) + k) for 1 <
s < H,+1, Whereas for r = n the only difference isthat1 < s < k;

. _ Bn,k,r,s
finally A, j s = o

and we point out that 25+ < @ s < 2.
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(B). (i) We set (w,,wi)E_| = ((wnk, ;k)fnjl)f” biorthogo-

n=1
_ uy — 1T__ens
nal where w11 = %7 and wip = 7 + ) Areio for
1
2 < k < Hy 4 1; moreover, for2 < n < P, wpy = >0 (4 “—
- n,L,r,
H, er.s  up . _ n—1 Uy
Zs:l An,l,r,5+l) + An,l,n,l, Whlle wn’k - ZT 1 (An k,r,1 +

ZH_T €r,s )—I_(Aun +Zkle'r173)for2<k<H “I’l

s=1 An,k,r,s+l n,k,n,1l s=1 An k,n, s
(ii) we write (n, k) < (n/, k') if either n < n’ orn =n'butk < k.

Theorem 3 In Construction C fix T € X with |Z|| = 1 and let

(1)

7 be an index, with1 <m < P — 1, so that |u}y ,(T)| > C;Q
Then for Q (of (5) of theorem 4 of subsection 2.1 of [2]) sufficiently large

there exists a strictly increasing sequence of indices

(R (n, k1), f (na ki) A2 U (R (1 16), f (1. 1,6)))iy

so that, if u € span(u,)?_, with ||[u|| = 1, hence

ﬂ:

1=

nup, with [a,| < K for1 <n <m, (2)

n=1

there will exist a sequence (b (n, k, i))?zl)gifl)z;} U (b(m,1,4)L, of

non negative numbers so that, settingw = ZZ . g"fl S b(n, ki)
Whn k), ki) (B) Whin ki), £ ki) )+ i b(m,1,0) Wi, 1,0), £ 1) (T) -
Wh(m,1,0),f(7,1,0) then the following properties hold:

1

w7l < 337 6.1

n<h(nki)fori1<n<n-—-1,1<k<Q,+1
and 1 < i < 4, analogouslymn < h (m,1,1) (3.2)
for1 <i <3, finallyn+1<h(m,1,4);

- 1
b(n,k,i) < SYa) forl<n<n—1
1<k<Q,+1landl <i<A4 (3.3)

- . 1 .
analogously b (m,1,1) < Wfor 1<i<4
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Proof. We start with an elementary fact which gives the first idea of the
modification of the proof of theorem 4 of subsection 2.1 of [2]. Let
(vj)§:1 be a sequence of four vectors in the complex plane with v; =

|v;] e?i and 0 < 0; < 2 for 1 < j <4, such that

™ . ™
9j+1+§—’yj<0j<(9j+1—|—7r—|—aj—7jW1thO<aj<m 4)

T
, hence Wlth —— —<

d--_ < T
and —— ; —
100 = <10 2710 "2

=7 <0 =01

<THa;—v <T— , for each j with 1 < j < 3; then, for

97
100@

each vector v = |v[ €”, there is (b;)j_, of numbers so that v =

Z bjv; with 0 < b; < A (two numbers of (b )] | are surely
7j=1

=0) for 1 < j < 4, where A depends only on |v| U (|Uj|)§:1

Indeed suppose 64 = 0 (it is sufficient to consider this case), hence § —
3 < b3 <7+ az—y3. Weknowthat O34+ 5 — v < 0y < O3+ m+
— 72 hence (see the interval of 03) m— (2 + 73) < 2 < 27+ (a2 + a3)
— (y2 + 73). Suppose that 7 + ﬁ <Oy <27+ (a2 + a3) — (y2 +73),
we know by above that § — {5 < §—93 <03 < mH+az—y3 < 71— lg—gQ,
hence: if 8, = 0 < 0 < 05 then v = b3vs + byvy with b3 > 0and by > 0;
if O3 < 0 < 65 then v = bovy + bg’l)g with by >0 and bg > 0 (since
by(4)%—17r—0<92793<77 100Q) if0y <0 < 27 (= 04 + 27m)
then v = byvg + byvg with by > 0 and by > 0 (since 7 + ﬁ < 0y <
21+ (g + a3)—(y2+73) < 27+ 7205 000 1%)% = 27— 110%22). Suppose that

T—(y2+73) < b2 < 7r+20Q,smce92+ 57— <t <Or+mt+ar—m
the interval of 6 implies that 7 + 5 — 95 <7 — (91 + 72 + 73) + 3 <
0 < 2w+ 20Q +ap—v <27+ 20@ + 100Q 10Q =27 — 100Q’ hence
again as above if 0 < 6 < 63 then v = byvz+byvg withbs > 0and by > 0;
if 03 < 6 < 6y then v = bovy + bgvz with by > 0 and b3 > 0 (always
since § — {5 < O —03 < 7 — 1OOQ) if 05 < 0 < 01 then v = byvy +byvy

with b1 > 0 and by > 0 (always since 5 — & < 61 — 6 < 7w — 25);
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finally if 01 < 0 <27 (: 94 + 271') thenv = biv1 + bavy with by >0 and

by > 0 (by above 7 4 § — %r <0 < 2w — 1387@); which completes the

proof of (4).

NOTATIONS: (i) we set w;k (7) = ‘w;k (7) efnk for1 <n <
2P and 1 < k < Q,+1; (ii) weset, for 1 <n < P, 2,1 = u, and Zny =
Uk, Znk = €nk—1 and 2k = e for2 < k < Q, + 1; (iii) we write,
for each set of indices n, k, i, r and s in the respective intervals and for
each couple of indices p and q, w* (n, k, i) forwj, ;o 1, 5 0,0 (0, ke, 1)
for 9h(n,k,i),f(n,k,i)> 2 (nv ka iy, S) for Ph(n,k,i),f(n,ki),rs A (n7 k, 1,7, 5)
for Apgnki),fnki)rsr B (s k,i,7,8) for By iy fnki)rs E1 (0, q)

—1
for 2NQ*(Q@-XI= (@D —at) p, (p,q) for 2N(Z§;i (Qj+1)+q¢—2),
finally FE (n,k,i) for oNQ* Q-3 7N @41~ (ki) +1) =
El (h’ (n7 ka 7’) ) f (TL, ka Z))

By (i) of (B) of Construction C' and by (ii) of Notations it follows
that,forlﬁnﬁPandlSk:an—i—lifnzlwlk—zk Zlis

s=1 A1 k1,5
1 n 1 'f' S n,s
while, for 2 < n < Py g = 35000 2030 e + 00
hence proceeding as for (10.1) and (10.2) of the proof of theorem 4 of

.
YPQp+1
ApPQp+1,P,Qp+1

ZQPH Lk for 1 < k < Qp; in general we have that, for 1 < n <
P—land1<k<Q,+1,

subsection 2.1 of [2] we have that Z;’,Qp = and 2}, =

Qn+1 * P Qr+1 *
5.1
Z Ansnk+r;1; Tsnk ( )
[wiill < EX 2K, By (n,k) + B2 (n,k) +1,Q)  (5.2)

(exactly the same proof of (10.1) and (10.2) of the proof of theorem 4
of subsection 2.1 of [2] works). We affirm that there exists ((h(7, 1, 1),
f(m,1,i)))i, of indices so that (m+1,1) < (h(m,1,4), f (7, 1,4)),
hence

n+1< h (ﬁ7 174) < Pand1 < f (ﬁa 174) < Qh(ﬁ,l,él) + 1, (61)
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lw*(m,1,4) ()| 1
- B(mL4m+1,1) " Q¥

Wi 1,4y, £ (T)
An(m,1,4), f(m,14) 41,1
|w* (n,1,4) (7)| /B (7, 1,4, 7, Qm + 1) >
Q*EX 2K, Fy (7,1,4) + By (M + 1,1) — 1, Q] while

Qnm,1,4)+1 ‘w* = P Qr+1 wr,

h(7,1,4),s (x)‘ N Z Z

Bym _
s=f@1a)41 L@l m iy =1 Birsn@ati

<EX[2K,E(n,1,4)+Ey(n+1,1) —2,Q];
moreover, for 1 <i <3, (M, Qr+ 1+ (i —3)) < (6.2)
(h(m,1,i), f (m,1,4)) < (h(m,1,i4+ 1), f(R,1,i + 1)) (hencen <
h(m,1,4)) with |w* (7, 1,7) (Z)| /B (W, 1,4,7, Qr + 1 + (i — 3))
> (1/Q?) |w* (m,1,i + 1) (T)| /B (M, 1,5 + 1,7, Qn + 1 4 (i — 3))
>FEX 2K, By (m,1,i+ 1)+ Es (m,Qr+1+ (i —2)) — 1,Q],
finally 6 (7, 1,i + 1) + £ — 15 < 0 (7, 1,i) <O (@, Li+ 1) +7
s ™ 1
IOOQ 20Q 10°
in particular y5.1; = ¢ (M, 1,4, 7, Qrn + 1) — o (M, 1,i + 1,7, Qn + 1)

+am 1, — a1, where 0 < agq 14 <Y1 <

= Ph@,1,i),f(@,1,i),7,Qn+1 — SOh(ﬁ,l,iH) f(@,1,i+1),7,Qn+1
-1

<%Z< Z (Qj+ 1)+ f (m,1,1))
h(m,1,i+1)—1

S0 YD (@D (L),
j=1

Indeed the first part of (6.1) is true otherwise, by (1), (ii) of Notgtions
and 0.1), gz < Juz o 7)) = | (@) = | Z2 T gy

An+1 s,n+1,1

Qi1 _wf Qi1+l |why1 (@) Q+1
Sl S | < 5 Bn:iiml + e Yo

rs n+1,1
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|wy: o (@)] < Q1143 2(Qr+1)
3

< é; about the second part of (i)

BT,s,ﬁ+1,1 - Qm
we have, by (A) of Construction C, by (iii) of Notations and by the first
|w* (7,1,4)(Z)| _ B(m,1,4n+1,1)  |w*(m,1,4)(7)|
part, that BldnQutD) —  B@dldnQnil) Ba,LintLl) =
1 B(m147+1,1) - 1 EX[2K,E1(7,1,4)+Es(7+1,1),Q] _
Q?* B(m,1,4,7,Qr+1) - Q?® EX[2K,E1(n,1,4)+E2(m,Qn+1),Q]

1 EX[2K.E1(n,14)+2N (3], (Q;+1)+1-2).Q)]
Q% EX[2K,E:1(m,1,4)+2N (37—, (Q;+1)-2), Q]

> Q?EX 2K, Ey (m,1,4) +
Jj=1

E> (m+1,1) —1, QJ; while, about the last part of (6.1), by (5.2) we have
Qnm1,0+1 @) P Qi1 |0 (@)
that 32 27V WJFZT B 14)+1 Dos= B|77| <

7,8,7,Qu+1
Qn(m,1,2)+1 Qr +1
Zs:frzﬁ,lA)—i-l Hwh (m,1,4), r= h(n,1,4 )+1 >t ersH <( Qh (m,1.4)™

fm,1,4) + 1 + Zr:h(ﬁ,1,4)+1 (@r +1)) "wh(ﬁ,174)7f(ﬁ,174)+1“

Q.EX]2K,FEy (h(n,1,4),f(n,1,4)+1) + Ea(h(m,1,4),f(7m,1,
4) +1),Q] < EX[2K,E;(m,1,4)+ Ey(m+1,1) —2,Q] (since
Ey(h(m,1,4), f (m,1,4)+1) < E; (m,1,4)). On the other hand by the
beginning of Construction C and by (5.1) we have that K >
125 0n41 (@) | = |Aﬁ"¢+zr D Ses M| by the

Qm+1,m,Qurp+1 ran +1

last two parts of (6.1) ]Ai W5 Q1 (@) I Z (7,1,4)— ZerH

LT QL r=n+l

wi,s (@) J14) M Q1,0+
Arjs,m,Qp+1 - Z Ah(ﬁlél)an +1| < K+ |Zs f(m,1,4)+1

U@ P Qrit_wis@
Ah(n 1,4),s,7,Q7+1 + Z’I’ h(n,1,4 —‘,—1 Z A7757ﬁyQﬁ+1 ‘ < 2EX[2K7

~ _ 2 EX[2K,E1 (7,1,4)+ E2(4+1,1)-2,Q)
Ey(m, 1)+ B (0 +1,1)=2,Q] = G- BXOK B ) 4 B (1) 1.0

Q*EX 2K, F; (7,1,4) + By (R + 1 1) - 1,Q] < 2,
EX[2K,E1(n,1,4)+E>(n+1,1)-2,Q] |w*(m,1,4)(Z)| < L |lw*(7,1,4)(T)|
EX[2K,E1(n,1,4)+E>(n+1,1)-1,Q] B@,1,47,Qn+1) ~ 29 B[, 1,4,7,Qn+1)"

It follows that there exists (h (72, 1, 3) , f (7, 1, 3)) with (7, Q7 + 1)
< (h(m1,3),f(m,1,3) < (h(m,1,4),f(m,1,4)) (hence n <
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h(m,1,3)) so that

jw* (7, 1,3) (7)| 1w (®m1,4) (@)
B(ﬁ>1737ﬁaQﬁ+1) QzB(ﬁvla4aﬁ7Qﬁ+1)
> (by (6.1)) EX [2K, Ey (7, 1,4)
+E(n+1,1) = 1,Q];

(7.1)

9 (7.1,4) + 0 (7, 1,47, Qu +1) + 5 < 9 (. 1,3)

+¢oM1,3,7,Qr+1) <V (@ 1,4) + ¢ ((7@,1,4,7,Qn + 1)
v

100Q

+ T+ am13 where 0 < a1 3 <
(7.2)

(let us deepen (7.2), on a1 3: setting P/ =1+ ZT 7;#411) ! (Qr+1)+

Pl "Qn ( ) r,s(x) r+1\h(7,1,4)—1
f(@,1,4) and (va);2y = Qnﬂt}@ —U(( Ammﬁﬂgﬂ LD

(%)fg’l’él , let Q" be an integer with Q' > P’ and sup-
pose that | ZPI vp| < |vpr| /29, suppose moreover that there exists
n' with 1 < n/ < P' — 1 with v,y = |vy| e, |vy| > |vpr| /2P’ and
¥,y = m+awith0 < a < 7 where 9 pr = 0, suppose also that for eachn
with 1 < n < P'—1suchthat |v,| > |vp/| /2P then v, = |v,| e with
7+ a < 9, < 2m, then the fact that ‘Zflzl vn’ < |vpr| /29" implies the

fact that |v,y| sena < |vpr| /29 that is senac < (1/ v ])(Jupr| /297) <
(2P") /29", we conclude that for sufficiently large @ we can suppose in
our case 0 < a3 < 7/(100Q)).

7

At this point we repeat the whole procedure starting from (h(7

1,3), f (m,1,3)) and (7, Q7 + 1) instead of (h (7, 1,4), f (7, 1,4)) an
(m+1,1), then we get (h (ﬁ,1,2) f(@m,1,2)) with (7, Q) < (h(n
1,2), f(n, 1,2)) < (h(m,1,3), f (m,1,3)) (hence againm < h (7, 1, 2)
)

(h
such that % > (;)12 Jéu(n(?’;’z)gﬁg > EX[2K,E, (m,1,3) +

E2 (n7 Qn + 1) - 17 Q] and Wlth 9 (n7 17 3) =+ 2 (ﬁa 1a 3aﬁ> Qm,ﬁ) + % <
V(m,1,2)+¢ (M, 1,2,7,Qman) <<V (7,1,3)+¢ (7, 1,3,7,Qr)+ 7+
am12andagain 0 < agm 12 < ﬁ (indeed by (6.1) and by (7.1) we have
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tht L\w*(ﬁ,lﬁ)(i)\ o LB(ﬁ,l,3,ﬁ,Qﬁ+1) |w*(m,1,3)(Z)| >
abt BmI3AQn Q@ BmL3nQn) Bm1,3mQn+1)

B 77173777 ﬁ+1 =3 =3
%..EX 2K, Fy (7,1,4) + By (m+1,1) — 1,Q] -

FXpRE G T oo EX2K, Er(n,1,4) + E2(n+1,1) —

1,Q] > EX[2K,Fy (m,1,3)+ F> (m,Qm+ 1) — 1,Q)]). Since (h(m,
1,3),f(m,1,3)) < (h(m,1,4), f (m,1,4)) by the last part of (A) of Con-
struction C' and by (iii) of Notations we have that (72, 1,3, 7, Qr + 1) =
(M, 1,4,7,Qn +1) + ym13 with 9513 = 5270, (Q;+1)(1/

(SR THQ+ 1) + £ (7,1,8) — /(0@ + ) + (A,
1,4))) > 135, hence, by (7.2), 9 (7, 1,4) + § — ym13 < 9 (W, 1,3) <
Y (m,1,4)+7+am1,3—vm1,3; analogously ¢ (7, 1, 2,7, Qr) = ¢(7, 1, 3,
n, Qﬁ) + Ym,1,2 with Ym,1,2 > ﬁ, hence ¥ (ﬁ, 1,3) + % — Tn12 <
¥ (m,1,2) <9 (7m,1,3)+7+am12—Yn,1,2. Finally we repeat the whole
procedure starting from (h (7, 1,2), f (7, 1,2)) and (7, Q) instead of
(h(m,1,3),f(m1,3)) and (@, Qz+ 1), then we get (h(m,1,1),
f(@,1,1)) with 7, Qz—1) < (h(m1,1),f(m1,1) < (h(m,1,

2), f (71,1,2)) (hence again 7 < h (7, 1,1)) such that 5= G200 >

e O > EX 2K, By (7,1,2) + B (7, Qm) — 1,Q] and with
% (ﬁa ]-7 2) + g - Vﬁ,l,l < 0 (ﬁ7 17 1) < % (ﬁ’ ]-a 2) + 7T+ aﬁ,l,l - ’yﬁ,l,l;
then (6.1) and (6.2) have been been proved.

So proceeding we have that there exists also a strictly increasing se-
quence ((((h(n,k,i), f (n,k, i)))f‘zl)g;‘fl)z;% with the properties of

(3.2), moreover, for each n with 1 < n < m — 1 with the following
PROPERTIES:

Letusset,forl <k <@, + land 1 <i <4, moreover for 1 <
n<A—2N (n ki) =31 1 4(Q;+1)+4(Qn—k+1)+(5—1i),
whileN (7 — 1,k,i) =4 (Qn-1 — k+ 1)+(5 —i),forl <k < Qn_1+1
and1 <i<4(hence N(m—1,Qn_1+1,i) =5—iforl1 <i<3and
Nm—1,Qz1+1,4) = 1);

Then we have that:(i) for 1 < k < Q,+1and1 <i < 3, (7, Qr —
1—N (n,k,4)) < (h(n,k,i),f (n,k,i)) < (h(n,k,i+1),f (n,k,i+ 1)),
|w* (n, k,i) ()| /B(n, k,i,7m,Qr — 1 — N (n,k,i)) > EX[2K, E1(n,
kyi+1)+ Es (ﬁ,Qﬁ—N(n,k,i))—l,Q],9(n,k,i+1)+%*’Vn,k,i <
V(nk,i) <9 ki+ 1)+ 7+ appi — Yok () for 1 < k < Qp,

(@)



212 PAOLO TERENZI

(M, Qm — 1 — N (n,k,4)) < (h(n,k,4),f (n,k,4)) < (h(n,k+1,1),
F e+ 1, 1)) and [ (0, o) ()] Bns e . G 1N 1)) >
EX [2K,E; (n,k+1,1)+ Ey (1,Qn — N (n,k,4)) — 1,Q];

(iii) for 1 <n <m -2, (M,Qr— 1 — N(n,Qn, + 1,4)) < (h(n,
Qn +1,4), f(n,@n + 1,4)) < (h(n + 1,1,1), f(n + 1,1,1)) and
[w*(n,Qn + 1,4)(@)|/B(n, Qn + 1,4,7,Qr — 1 — N(n,Qn + 1,4))
>EX[2K E1<n+17171)+E2(ﬁ7Qﬁ_N(n7Qn+1v4>)_ ’ ];

LQ
)(n Qn 1- ( _17Qﬁ—1+174)):(ﬁ7Qﬁ_2)S(h(ﬁ_
17Qn71 + 1 4) f( -1 Qﬁfl + 174)) < (h(ﬁv 17 1)7 f(ﬁa 17 1)) Wlth
jw* (11, Q1 +1,4)(2)|/B(A—1, Qu_1+1,4,7, Qn—2) > EX[2K,
El(ﬁv 1, 1) + E2(ﬁa Qn — 1) - 17Q};
V) < h(n,k,i)forl <n <m—-1,1<k < @, +1and
1 <4 <4,

<
k

Indeed by means of the same procedure there exists (h(n—1, Q71+
174-))1 f(ﬁ - 1)@%—1 + 174)) Wlth (ﬁu Qﬁ - 2) S (h(ﬁ - 17Qﬁ—1 +
1,4),f(m—1,Qr-1+1,4)) < (h(ﬁ, 1,1), f(m,1,1)) (hence always m <

- LQr L)@ L 1 |w(m1,1)@)
h(n—1, Qu1+1,4)) with g ot A > ) g 1Tinan—2>
)

EX[2K,Ei(m,1,1) + E’g(n Qn—1) —1,Q] and with ¥(7,1,1) +
Vi1,0n 1414 < V(M—1,Qn_1+1,4) < 19(n,1,1)+7r+an 1,0m 141, 4—
Yiie1,Qn_1+1,4} SO proceeding there exists also ((h(m — 1, Qr—1 + 1,1),
fm—1,Q7-1+1, z))),lsothat for1<i<3,(m,Qr—1—N(n—
LQna + 14) = mQn —1—-(5-14) < (h(n — 1,Qz-1 +
t1,7), f(m@ — 1,Qr-1 + 1,i)) (hence always m < h(m — 1,Qn-1 +
172))< (h(ﬁ71>Qﬁfl+17Z’+1) f( ]-Qn 1+17l+1)) and
|w*(—1,Qn—1+1,i)(Z)| > |w* (7—1,Qn—1+1,i+1)(T)] >
B(—1,Qr-_1+1,i,n,Qr—1—(5—1)) Q2 B(m—1,Qn_1+1,i+1,7,Qn—1—(5—1))
EX[2K,Ei(n—1,Qn-1+1,i+1)+E2(n, Qr—(5—1))—1, Q], moreover
VA —1,Qn 1+1,i+ 1)+ 5 —ym-1,0,1+1i < ﬁ(ﬁ—l,Qﬁq—i-l,i) <
IA—1,Qn-1+1,i+1) + 7+ an1,Qss+1i — Vi—1,Qr_y+1, Anal-
ogously we get (((h(7 — 1,k, i), f(7 — 1,k,i))) 1)?" 'with, for each
leth 1 S k S Qﬁ_l, (ﬁ,Qﬁ_ 1 —N(ﬁ— 1,k,4)) = (n Qn —1-
— w*(n—1,k,4)(T
Lk+1,1), f(R—1,k+1,1)) and B(ﬁfl,k,4,|ﬁ,Q(ﬁflf4(é(ﬁz‘1fk+1)71) >
EX[2K7 El(ﬁ_ 17 k+ 17 1) +E2(ﬁ7 Qﬁ_4(Qﬁ—1 —k+ 1) - 1) - 17 Q]
while, for each i with 1 < ¢ < 3, (m,Qr — 1 — N(m — 1,k,i)) =
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1, k,i)) < (h(m—1,k,i+1), f("R—1,k,i+1)) (hence always 7 < h(m—
. . w*(n—1,k,i) (T

1L,kyi+ Dfor1 <4 < 4)and B(ﬁ_1,k,i,ﬁ,éﬁ£1—4ﬁéﬁ)f1)lk+1)_(5_1-)) >

EX[2K7 El(ﬁ_ 17k77’+ 1)+E2(ﬁ7 Qﬁ_4(Qﬁ—1 - ) 9+Z) -1 Q]

(since —4(Qn-1—k+1)—(5—1i) = —4(Qn-1 — k) — 9+ i); now the

procedure to complete the proof of Properties is clear.

At this point we can write in (2), by means of (ii) of Notations,

n—1 n—1Qn+1
U = an 1Up + E G, k—l—lenk + am,1Um = § E QAp kZn,k
n=1 n=1 k=1

+aﬁ’1'LLﬁWith Ap kt1 = 0for1 <k<LQn and 1 <n<n-1I,
while @, 1 =@, for1 <n <m.

Like theorem 2 our aim now is to approximate the addenda of (8) and,
since the numbers @, are in the complex plane, this approximation
bases itself on the procedure of (4). Now the reason of the presence
of the angles ¢y, ;. , s in (A) of Construction C' appears: since without
these angles (that is if ¢, 1 » s = 0) we could have, for instance in (7.2),
6(n,1,3) = 0(m, 1,4)+7 (which is exactly (14.1) of theorem 4 of subsec-
tion 2.1 of [2], since the condition becomes 6(7,1,4)+ % < ¥(7m, 1,3) <
¥(m,1,4) + 7 + ag,1,3), but in this case the procedure of (4) could not
work. Therefore, by means of the same procedure of the proof of (17.1)
of theorem 4 of subsection 2.1 of [2], we affirm that we can determine
numbers as in the thesis of proposition, such that (3.2) is satisfied, more-
overso that the following analogous relation of (17.3) of theorem 2 holds:

4
Z n’ 17 ¢ wh n717i)7f(ﬁ717i) (f)mh(ﬁ717z)7f(ﬁ7177,) B aﬁ71uﬁ

1

S SarnQ

Indeed, analogously to (17.1), (17.2) and (17.3) of theorem 4 of subsec-
tion 2.1 of [2], this inequalitybases itself on the equality

4
ZE(ﬁ, 1, i)w;(ﬁ,l,i),f(ﬁ,l,i) (T) a,

=1

1

(ﬁ717l) 7f(ﬁ?17i)?ﬁ71

Sl
B
=
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that is, by (A) of Construction C' and by (i) of Notations,

4
Z (m,1,1)

e On(m,1,0), £ (m,1,0) TR, 1,0), £ (7,1,0),7,1)

Wh(m,1,),£(,1,) (%) R ——

At this point we notice that, in order to use the procedure of (4) in (9),
we need that (9(7, 1,i) + (7, 1,4,7, 1)), verify the hypothesis of (4),
while by (6.2) we only know that (9(7, 1,1))?_, verify the hypothesis of
(4), precisely we know that (see the last part of (6.2)), for each i with
1<i<3,0m L+ 1)+ 5 — 1 <0(m,1,4) <0(m, 1,i+1) + 7+
amli — Ym,l, where 0 < an 1 < ﬁ and Ya,li = Oézj I(QJ + 1)
. s 1
with o = %(Z?(’i“) LQitD+fm Ly ST, +1+f(n,1,z+1>)
therefore wehave to check that also (9(m, 1,) + ¢(7, 1,i,7, 1)1 ver-
ify the hypothesis of (4). Indeed we have that, setting by above Brii =
pm,1,i,m,1) — o(m,1,i + 1,m,1) = a(31—(Q; + 1) + 1), then
(w1 i+1) 4@, 1,i+ 1,7, 1)+ 5=y < 9@, 1,i4+1)+(m, 1,0+
L, 1)+5—ym1i+Bm1i =00, 1L, i+1)+e@,1,4,7, 1)+ 5 —ym1, <
0(m,1,49) + (@, 1,i,m,1) < 0@, 1,i+1)+ (7@, 1,i,7, 1) + 7+ o1 —
a1 =0, Li+ 1) +om 1,i+ 1,7, 1)+ 1+ am1i— Y1+ Bt <
9(n,1,z+1)+g0(n 1, z—i—l m, 1)—|—7r+ozn“— 5%1@ (since fp1,i =
04(2 (Q] +1)+1) < 3a Z] 1(Q; +1) = 377.1,i by the definitions
ofConstrucUon C), thatis Q(n, Li+1)+e(m, 1,i+1,7, 1)+ 5 —ym1, <
07, 1,4) + o(m,1,i,m,1) < 0(7, 1,0 + 1) + (@, 1,0 + 1,7,1) + 7 +
am,1,i — 37n,1,4; then it is possible to check that the procedure of the
same proof of (4) continues to work (that is the reason is that, by the
definitions of Construction C, Z?;ll(Qj + 1) + 1 is negligible if com-
pared with >°%_, (Q; + 1)). Therefore it follows that the equality of (9)
is possible.

However we have also to notice that, if @ is very large, these an-
gles 77.1.; could be very little (since we know by the last part of (A) of
Construction C' that % < Ym,1,i < 15), which is crucial if in the second

part of (7.2) we would have 9h(ﬁ7173)) f(@,1,3) T Ph(@,1,3), f(7,1,3)7,Qn+1 =
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Onm,1,4), f(m,1,4) T Ph(m,14), f(70,1,4)7,Qnt1 T T hence Onm,1,3), f(m,1,3) =
On(m,1,4), 11,4) + Y1 3 —|— 7, indeed this fact would imply for the

Wi .1.). 4 G1.5)
b(m,1,5) T —— of (9) to be very large, which seems to be

at odds with (3.3) where we need for the numbers b(7, 1, 5) to be very
little. But this fact is not a difficulty because, as we can see in Proper-
ties, it is only sufficient to ask to the integer N (which appears in (A)
of Construction C) to be sufficiently large; indeed if N increases also
|wz(ﬁ’1’j)’f(ﬁ71,j) (T)|/Bh(m,1,5),f(m,1,5)7,1 increases and we again can get

b(m, 1, 4) small.(hence N depends on M’ and Q) and hence it depends
also on P (see Construction C)).

Analogously we can proceed to get the relation which corresponds
to (18.3) of theorem 4 of subsection 2.1 of [2], which now will have the
following form, for 1 < n <m—1:for2 < k < @, + 1 it will be

Qn+1 *n,',i, n,j,t (:1?) Q+1
IS b Bn ) et S L 0 S B

h(lw) f(l]l)( z) h(n,l,z),j(n,l,z)( )
NN + n, 1 7 (& +
J )Ah(lJl) F(l.4,4)m.k ZZ 1 ( ) Ah(ﬁ,l,i),f(ﬁ,l,i),n,k) k=1

4 p—
Zz 1 b(n k Z)wh(n ki), f(n,k z)( ) wh(n ki), f(n,k,i)]_an,kemk_l“fm
while, for k=1, [|[(SF" S, B, i) ossinan @y

Ah(n,j,i)e,f(n,j,i),n,l

+1 i i () 4 T .
l n+1 ZQl Z (l ]’ )% + Zi:l b(n,l,z)

wh(n,l,z),f(n,l,z)( )
Ah(ﬁ,l,i),f(ﬁ,1,i),n,1) n_'_Zz 1 (n 1 Z)wh(” Li),f(n,1 Z)( ) wh(n,l,z) f(n,l,i)]_

G, 1 Un|| < W. Hence it is possible to verify also (3.1); which com-
pletes the proof of theorem 3. m
OBSERVATION 1. Therefore whereas in the real case, for the

construction of the approximation w = >.7"_, byw f(n) of the element

W= Y.""_, Gyup, at each step we consumed only one element w F(n) (see
Observation 1 of subsection 2.1), now at each step we need to have at
disposal at least four elements wy(, (even if actually we will use only
two of them).

Obviously our choice of the large numbers H,, is not necessary,
smaller numbers would be also sufficient. The only reason has been of
convenience for the applications, indeed by (3.2) of previous theorem
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we used only the elements of ((wy, g,w? )i )P instead of the whole
((wnpsw? )P (see the end of Observation 1 of subsection 2.1).

Remark 4 (COMPLEX MODIFIED GENERATING BIORTHOGO-
NAL SYSTEM (CMGBS))

In theorem 3 we can replace (wn,wi)E_ | by means of (vn,v})E_; where,

for each n with 1 < n < P/5 (we can suppose P multiple of 5),

Usn—a = (—wsp—a/D) + Wsp—3 + € 2Wsp—2 + € Wsp_1 + €' 2 Wy,

Ugn—4 = (_Dw;n—4) + w;n—?) + w;n—2 + w;n—l + wgn
(indeed v%,_,(vsn—a) = (+1) + (1 + ez + eim 4 e"%ﬂ) =1)
Usp—3 = Wsn—3 + w5n_4/D, v;n—3 = wgn—3 - U;n_4
= Dwgn—4 - (wgn—Q + w;n—l + w;n))
Usp—2 = Whsn—2 + w5n,4/D, Ugn—2 = wgn—Q - eigvgn—ll =
einggnle + (1 - ei%)w;an - ei%(w;nf?; + w;nfl + w;n))
Usn—1 = Wsn—1 + Wsn—a/D, V5, 1 = w5, 1 — 6””%-4 =
€% Du,_y+ (1= €™ wd,_y — €™ (wh,_y + wh,_p + i),
- 37
Usn = Wsn + Wsn—a/D, U;n = wgn - 617’0;”74 =
eiSTWDwg‘n_Zl +(1- ei%ﬁ)wgn - ei%ﬂ(w%‘n_s + W, _g + W, ).
where D is an integer > 225:1 llwrll,

Then the whole statement of theorem 3 continues to hold; we have

only to read (vn,v:)E_, instead of (wn,w})E_,.

OBSERVATION 2. Analogously to the Observation 2 of subsec-
tion 2.1, suppose that

(sn-i)izo © ((((A(n K, 0), [k, 0))iza) ™ )Rzt U ((R(7, 1,4),
f(ﬁa 1a Z)))f:l
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of thesis of previous theorem, then |wf, ,(Z)| is much larger than
S22 o lwk, ;(@)| and D is much larger than |wf, ,(%)|; therefore we
can approximate (v%, ;(T)vsn—;)?_, by means of

(Dws,, 4(ZT)wsn—3,¢€ 2Dw5n 4(T)wsp—2,

mesn o(T)wsp— 1,e = Dwg,, 4 (T)wsn);

that is we have the same coefficient but with four possibilities for the
angles, which is what we need.

3. ON THE EXISTENCE OF THE UCP-BASIS ALSO IN THE COMPLEX CASE

3.1 The direct extension to the complex field

OBSERVATION 1. On the Walsh matrix in the complex field.

Let (o )QS be the natural basis of E = 12 with (op,0})22

n=1

blorthogonal Let (0, on) 1 be the biorthogonal system derived from
(0n, 0%)22 | by means of the matrlx of Walsh.

Not all the properties of the Walsh matrix keep exactly in the
complex field. For instance it is obvious, that 01 U (0ym-1,1)5 _ is
1—equivalent to the natural basis of I{. But this fact does not hold in
the complex case; indeed if (¢}, €}) is the natural basis of I2_, the applica-
tion of the Walsh matrix gives (e1, e2), with e; = €] +€}, and ex = €| —¢},
and in the real case (e1, e2) is the natural basis of [?; while in the complex
case we have for instance that

lex-tei eal | =1(¢h +eb)+e'E (¢ —h)|| = max([L+¢'E], [1-€'F|) = V2.

Obviously by means of little generalizations of the Walsh matrix we can

always have sequences (1 + ¢)—equivalent to the natural basis of 7§’ for
NN+1 .

each positive integer N and for any ¢ > 0. For instance if (0,,),_; is

. N+1 . : .
the natural basis of I)" " in the complex field, setting
N EN I—(k—1)N
e1 = Zol,k with 01, = Z e~ Mo forl <k <NV
I=(k—1)N+1
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(hence
N AR —(nN 1N
. l . — _
o1 = 5o, 0y = Y, TR e,
=1 I=(NN-1)N+1
N il 1—(k—1)N
eg= Z 02,1, with 09, = Z e N 2”0171 forl1<k<NN-1
k=1 I=(k—1)N+1

and so on till

N kN
. Jl=(E=DN
eN= E ON.k with ON k= E e N ON-1, fOI‘lSkSN;
k=1 I=(k—1)N+1

we immediately have that, for any (a,,))_; of complex numbers,

N N N ,
> anen]| = lanl | £ (N) Y Jan] for e(N) = |1 - &%
n=1 n=1 n=1

2T
= V24/1— cos =
V2 cos —7,

that is (e, )N_; is (1 +&(IN))—equivalent to the natural basis of /{ in the
complex field.

However, for what concerns the extension of the UCP-basis in the
complex field, these generalizations of the Walsh matrix are not neces-
sary.

By means of the same ideas of the generalization to the complex
case of the generating biorthogonal systems of section 2, it is possible to
generalize to the complex case all the theorems and lemma of sections
3...6 of [2]; in particular we point out that the proofs of sections 6 of
[2] work also in the complex case). But only apart from lemma 9 of
subsection 2.3 of [2], for which the extension to the complex case is still
open. Let us recall this simple lemma.
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We say that, given a sequence (ay)%_; of numbers, OOK an)k_,
is (M, e)—monotone if, for each integers K and @ with

K Q
1<K<Q@Q<P, ]Zak| < \Zakl+M'.max(|ak| :1<k<P)+e.
k=1 k=1

Lemma5 Let (e;)f;il be the natural basis of 12° and set ey = ey and
en = e — el for2 <n < 29 then for each (an)gfil of numbers there

29 such that:

exists a permutation (W(n))?filof (n):2y

(2) <
(77) (

Therefore, if it would be possible to extend to the complex case
the previous lemma, it would automatically follow the extension of the
UCP-basis in the complex field; indeed it would be necessary only some
obvious modifications in the construction of the UCP-basis in the real
field. Moreover also for all the theorems and lemmas of section 5 only
reasonable modifications would be necessary.

2Q

) s (1,0) — monotone;
q=1

q

D txn

n=1

2Q
> s (0,0) — monotone.

q=1

q

Z A (n)Cm(n)

n=1

I only point out that, for instance, in the particular case of |a,| =
a> 0forl < n < 29 the extension of previous lemma to the complex
case Is easy.

3.2 Passage through the real associated space

Let X be a complex separable Banach space.

I recall that (wy,) with (wy,, w}) biorthogonal is an M’—Dbasis for
X if the closure of span(wy,) is X and if, for any = of X, the condition

w(x) = 0 for every n implies that x = O (the null vector).

Then let (wy,) be any M’ —basis for X with (w,,, w}) biorthogonal,
we pass to another sequence (u,,) with ug,_1 = w, and ug, = iw, for
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each n; let us call X, the closure of span(uy,) in the field of the real
numbers.

Then if x € X there exists ((cpm)Q(p ))o0 1 of complex numbers,

n=1/p=
with ¢, , = ¢, ,,+ic}, ,, for each n and p, such that ||z — ngg CpnWnl| <
% for each p; hence we have that ||z — 2(5)1 (Cpnt2n—1+Cp puzn)|| < 1%

for each p hence X C X,. On the other hand let y € X,., there exists

((cpom> cgm)zb(ﬁ)l)gil of real numbers such that ||y — Z(i’)l(c;muzn,l +
& puon—1)l| = Iy — Z(ﬁ)l(c;m +icy ,)wn|| < % for each p hence

X D X, that is the two sets X and X, coincide.

Definition. Let (u,) be UCP-basis for X,., we say that (u,,) has
property P if, for each z € X, with 2 = 377 | anur(,) for some per-
mutation (7(n)) of (n) (hence (ay,) is unique), (w(n))22, is always a
permutation of the couples (ug2,—1,u2y,) for each n, that is these cou-
ples are armoured hence there exists another permutation (7(n)) of (n)

such that (ur(2n—1), Ur(2n)) = (Ug5(n)—1, U2z(n)) for each n.

Obviously (uy,) is not linearly independent in X, however it is easy
to recognize that

"(wy,) is M'-basis for X <= (uy) is M'-basis for X,.";
"(wy,) is Schauder basis for X <= (u,,) is Schauder basis for X,.";

"(wy,) is UCP-basis for X <= (u,,) is UCP-basis for X, with property P"
(indeed if (uy,) has property P, it is also

T = Z AnUg(n) = Z(a2n71u7r(2n—l) + a2nln(2n)) = Z(aznun;(n)—n
n=1 n=1 n=1
+a2nu2%(n)) = Z(QQn—l + Z‘a2n)u)%(n) = Z an%(n)
n=1 n=1

with ¢, = as,_1 + iaz, for each n hence also (¢,,) is unique).
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